
The ARES Project: Cloud Services for Medical
Genomics

Mauro Femminella, Gianluca Reali, Dario Valocchi
Dipartimento di Ingegneria, University of Perugia,

Via G: Duranti, 93
06125 Perugia, Italy.

[mauro.femminella , gianluca.reali]@unipg.it
dario.valocchi@gmail.com

Emilia Nunzi(*)(**)

Valerio Napolioni(**), Matteo Picciolini(**)
(*)Dip. di Medicina Sperimentale, University of Perugia
(**)Polo d'Innovazione Genetica, Genomica e Biologia

Via Gambuli, 06132 Perugia, Italy
emilia.nunzi@unipg.it, [v.napolioni,

m.picciolini]@poloinnovazioneggb.com

Abstract— This paper shows the cloud services provided by
the project ARES. The network solutions have been illustrated in
a companion paper in the same conference. The ARES project
aims to deploy CDN services over a broadband network for
accessing and exchanging genomic datasets, accessible by medical
and research personnel through a Cloud interface. This paper
illustrates the procedure defined to access such services, also
providing a case-study simulation to show the implementation of
the bioinformatics pipeline included. The experimental activity in
ARES aims to gain a detailed understanding of the network
problems relating to its sustainability given the increasing use of
genomics for diagnostic purposes. The main aim is to allow an
extensive use of genomic data through the collection of relevant
information available from the network in the medical and
diagnostic field diseases.

Keywords— Genomic Big Data, Cloud Services, Genomic
Pipelines

I. INTRODUCTION

The ARES (Advanced Networking for the EU Genomic
Research) project is proposing a new approach for the use of
genomic data in the medical/research field. [31]. It consists
of a cloud-based access to genomic processing services for
medical and research personnel. The need of this research is
given by the massive and increasing production of genomic
data.

The completion of the human genome sequencing project
represented a milestone in the field of biological and medical
sciences. It happened about ten years ago in the framework of
the US project Human Genome. It has been the results of
years of expensive research activity. Although the clear
evidence for the scientific relevance of that result, at that
(recent) time, the possibility of handling the human genome as
a commodity was far from imagination due to the elevated
cost and the complexity of sequencing and analyzing complex
genomes. Today the situation is much different. The order of
magnitude of the cost necessary for sequencing one human
genome is getting close to 1000 € [3].

The cost for sequencing both a unit of DNA and the whole
human genome over the time has been decreasing faster than
the Moore’s law [1]. This cost evolution is referred to as “the

big drop”. It has begun in 2008, and it is due to the
introduction of novel sequencing machines. Under a very
practical viewpoint, this means that the cost per unit data
produced decreases more rapidly than the cost for storing a
unit data and, more importantly, for distributing a unit data.
Hence, if the trend shown in [1] will continue for some years,
the bottleneck of the process of effectively using the genome
information will reside on the ICT side. This is the essential
rationale of our research and our proposal. Nowadays, the
limiting step is no more the sequencing capability of current
technology but rather the ability to process large data file
efficiently and allow remote exchange and access for meta-
analysis investigations. As proof of principle we have
implemented a test bed for transferring and sharing genome
sequence file and processing software for diagnostic purposes.

In this paper we illustrate the protocols for accessing the
cloud services and a case study relevant to a real usage of a
genomic processing service.

II. BACKGROUND

A. Genome analysis tools.

Different genome sequencing tools have been developed in
the last decade. The analysis of such data mainly consists of
sequence similarity detection. This detection of similarity, is
crucial in both diagnostic and research activities. BLAST and
PSI-BLAST [4], [6], are the most popular sequence alignment
tools. Nevertheless, the envisioned growth of genome
databases poses some challenges to their suitability and
reliability. Alternatives to BLAST and PSI-BLAST are,
SSEARCH [8], CUSHAW[9], FASTA [10], CASAVA[7] ,
SAM [11], IMPALA [12], and HMMER [13].

Some alternative approaches have been also proposed for
accelerating the execution of BLAST, such as its parallel
execution on shared memory HPC, (SGI Altix [17]),
distributed-memory HPC (IBM BlueGene/L [20]), and
execution in clusters implemented through high-speed
interconnections (MPP2 [16]). There are also solutions for
executing parallel BLAST methods for general clusters [14],
[15], [19]. In general, the objective of these approaches is to
speed up the fulfillment of BLAST queries by resorting the

partitioned databases. For example, the mpiBLAST package
[14] can achieve super-linear speed-up with the size of
databases by removing unnecessary paging. Nevertheless,
some scalability issues illustrated in [16], along with problems
due to result merging and I/O synchronization have not yet
been addressed effectively [19].

B. Cloud and Data Services

In recent years, Google and Amazon have struggled to
tackle the problem of big data handling by their specific cloud
applications [2]. For example, the Amazon S3 cloud
computing service provides a web services interface to store
and retrieve, namely, any amount of data. This service may be
used to store and retrieve genome data. Nevertheless, no
specific tools are available for optimizing the perceived
network quality in the basis of the specific research needs (e.g.
optimized download time and number of accomplished
requests through dynamic VM instantiation, and CDN
provisioning). In particular, no specific tools for handling
genomic data set are made available. For example, a
popularity model usable for managing data is not available.
For other data types, such as a video clip, the popularity
evolution typically increases until a maximum is reached.
Then, it unavoidably decreases over time. For genomes, the
popularity evolution does not have a typical known pattern, as
sketched in Figure 1. A genome is a plentiful source of
information, most of which is still unveiled. It may happen
that the interest over an old genome of a dead man is more
interesting than a genome recently sequenced. The popularity
could also decrease and increase again after some time
according to the research dynamics in a totally unpredictable
manner. Thus, in the short and medium terms the evolution of
the available data in the future networks can be modeled as a
pure-birth process. Therefore, beyond the clear need to have
large amounts of storage capacity, specific solutions for
managing data storage are expected. The proposal includes a
dynamic cache management [18], which adapts to the request
pattern of genome data.

time

Typical web content popularity over time

time

Genome and metadata popularity over time

time of creation

time of creation

Figure 1 – Possible popularity evolution over time.

III. NETWORK ASPECTS

A detailed description of the ARES network architecture is
reported in a companion paper submitted to the same
conference [29]. In order to clarify the working context of this
paper, we provide a short and basic description of network
architecture for the sake of consistency of this paper.

As mentioned above, the user interface of the system is
based on a cloud support. Behind this interface, the content
made available in the cloud is managed through a novel
content distribution network (CDN). This CDN is
implemented by means of a distributed network of servers and
file storage devices, typically referred to as caches. Their
dynamic management aims at improving the user perception
of the cloud service. This network architecture could also be
compliant with the Application Delivery Network paradigm
[34].

The core protocol of this dynamic management is the NSIS
suite of protocols, specified by the IETF RFC 4080 [21]. It
consists of two layers:

- NSIS transport layer protocol (NTLP), which is a generic
signaling transport layer used for node discovery and
message sending.

- NSIS signaling layer protocol (NSLP), which is the upper
layer, which implements the specific signaling application.

GIST (General Internet Signaling Transport protocol, [22])
is the NTLP implementation proposed by the IETF. It
implements a set of basic capabilities, including node
discovery and message transport and routing. It provides end-
to-end signaling, that allows sending signaling messages
towards a destination, and path-coupled signaling, that allows
installing states in the NSIS peers over the path to the
destination.

In [24], we have illustrated our implementation of a further
routing paradigm, implementing off-path signaling. It allows
sending signaling message to an arbitrary set of peers,
regardless the user data flow. This mechanism is widely used
in ARES to discover the available network resource and to
find the optimal location where the genomic processing is
implemented, as shown in what follows.

The ARES solution is implemented through a massive use
of service modularization and virtualization provided by the
NetServ service deployment architecture [28]. The runtime
environment executing services is provided by a virtual
services framework, which manages access to service building
blocks and other network resources. Applications use building
blocks to drive all network operations, with the exception of
the IP packet transport.

The components of the NetServ architecture are:

- Service containers, which are user-space processes. Each
container executes a Java Virtual Machine (JVM), running
the OSGi framework for hosting service modules, which
are Java archive files, also referred to as bundles.

- NetServ controller, which installs modules in service
containers, or remove them, at runtime. In more detail, it
coordinates the NSIS signaling daemons, the service
containers, and the node transport layer. It makes use of
the netfilter library through the iptables tool. Any packet
matching with one of the service rules is routed from the
network interface to a service container process, which is
executed in user space. The NetServ controller is also in
charge of setting up and tearing down service containers,
authenticating users, fetching and isolating modules, and
managing service policies.

- Signaling module, based on an extended version of NSIS-
ka, an open source NSIS implementation by the Karlsruhe
Institute of Technology [23].

- The NetServ repository, which stores a pool of modules
deployable through NetServ signaling.

The cloud operation is managed through OpenStack,

which is a cloud management system that allows using restful
APIs to control and manage the execution of virtual machines
(VMs) on a server pool [25]. It allows retrieving information
about the computational and storage capabilities of both the
cloud and the available VMs. Each VM can expose, through
OpenStack, the required configuration, which allows mapping
the minimum required computational capabilities for a specific
processing service into the hardware configuration for the VM
that executes the service.

OpenStack allows also using a restful API to inject new
VMs into the pool, thus allowing the system to retrieve the
relevant files from other locations. Furthermore, OpenStack is
not bounded to the use of a single hypervisor, but it can make
use of different drivers to support different formats of virtual
machines and hypervisors, such as Q-emu, VMWare, KVM,
Xen, LXC and Hyper-V.

Our architectural solution thus combines different cloud
paradigms, as shown in Figure 2. We have implemented an
optimized solution, the core of which is an optimization
algorithm that determines the most suitable PoP for executing
the software pipeline implementing the desired service. From
the perspective of the medical user, the access is totally
equivalent to a Software-as-a-Service (SaaS) cloud delivery
model. The software components are transferred from the
most convenient location, being it either a static repository or
a dynamic cache managed by a NetServ service. Finally, the
virtual machines executing the desired genomic software
pipeline uses the computing resources made available through
a Infrastructure-as-a-Service (IaaS) cloud model.

IV. CLOUD SERVICE CLASSES

The -omics (whole-genome, whole-exome, transcriptome)
data processing is typically performed through a pipeline of
different software packages, [26]. The input files are:

a) FASTQ files containing sequencer output raw data;
b) FASTA files containing genome/exome/transcriptome

sequences;
c) annotations files containing the list of gene sequences.

Optimized
Solution

SaaS Cloud service

Medical interface for private genome management

Figure 2 – Networking and service paradigms contributing to the optimized

solution.

Even if the patient’s genome may be locally stored, all
other files must be downloaded from different databases. The
overall amount of data ranges from few GB to tens of GB.

When all the files are available in a selected PoP, the
relevant processing can start, and it may take different hours to
generate the desired result. The time taken for having this
result could take some hours to same days. In the view of the
increasing diffusion of genomic data, this poses two technical
challenges to network designers, the minimization of the
service delivery time when a very serious disease must be
treated and the minimization of the overall network traffic. In
regards to the former objective, some initiatives aim to
decrease the processing time. For example, the Translational
Genomics Research Institute (Phoenix, AZ, USA) adopts a
cluster of several hundreds of CPU cores [27] to significantly
decrease the processing time of the tremendous volume of data
relevant to the neuroblastoma. While this approach may be
expected in a small number of prestigious organizations, it
cannot be generally adopted when genomic processing will be
largely needed in most of countries. In regard to service time,
a lot of research is urgently needed on the networking side.
For example, the Beijing Genomics Institute (Bejing, China),
which produces 2,000 human genomes a day, instead transmit
them through the Internet or other networks, sends computer
disks containing the data, via express courier [30].

We believe that a significant contribution to the
minimization of the service delivery time can be provided by
suitably managing shared computing and storage resources
and accessing them through the illustrate cloud management
operation.

In addition, we are implementing different cloud service
classes according to the severity of the handled clinical
situation. For example, peripheral neuroblastic tumours
(Neuroblastoma, Ganglioneuroblastoma, Ganglioneuroma)
require a very rapid diagnosis, while breast cancer and other
solid cancers may be handled in some days. Neuropsychiatric

conditions can be processed in a longer time-window (e.g. 2-3
weeks)

For this reason, we are implementing different cloud
service classes, as follows:

• Minimum delay CDN services, to be used for handling
very urgent situations. In this case optimization functions
are configured for generating the shortest service delivery
time.

• Short delay CDN services for handling less urgent
situations, to be used for handling serious situations, but
with sufficient tolerance in order to introduce some
optimization of the network resources so as to increase the
number of simultaneous medical requests processed by
using the network resources.

• Balanced network load cloud services for handling all
other situations. This class refers to delay tolerant
situations, typically relevant to research purposes and not
for diagnosis. In this case the optimization functions aim at
maximizing the number of simultaneous medical requests
processed by using the network resources.

Table I reports some examples of tolerable times for
medical personnel requiring support from ARES. These
tolerable times include the CDN service time, in addition to
other times which depends on other medical requirements,
such as the type of the sequencing, the portion of the genome
to be analyzed, the processing software used and the reliability
of results. Through the expertise of the researchers involved in
ARES, we are translating these times in CDN service classes.

TABLE I. EXAMPLE OF TOLERABLE TIMES

Diseases T im e (day s)

Neuroblastom a 2

Bre ast Cancer 7

Colon Cance r 7

Acute Lym phoblastic Le ukem ia 4

Le ukem ias 4

Lym phom as 4

M yelom a 7

Cerv ical Cancer 7

Pancre atic Cancer 4

V. EXPERIMENTAL CDN SCENARIOS

Figure 3 sketches the experiment that will be executed to
demonstrate the effectiveness of our approach for supporting a
generalized use of genomic information in the future medical
system. In what follows we illustrate the involved entities and
the steps for the execution of the experiment.

We stress that in this activity we will use publicly
available genomic files with no reference to the subject’s

identity , and no information about current health conditions,
sexual lifestyle, ethnicity, political opinion, religious or
philosophical conviction.

Involved Entities:

Public Genome/Annotation Database: database storing
publicly available genomic informations.

Medical Centers: we assume the existence of different
medical centers that make use of genomic annotations.
Diagnoses are done by processing genomics data of patients
through pattern-matching algorithms. Desired patterns are
taken from genome annotations.

Private Genome/Annotation Data-base: we assume that
each Medical Center stores patients’ genome information
within a local private data-base. This information is not
publicly accessible (Nevertheless, the experiments in ARES
will be done by using publicly available genomic information
only, that will be used also to implement the private data-bases
without compromising the significance of the results).

NetServ CDN nodes: These nodes have a threefold role.
As GIST enabled nodes, they discover network resources; as
NetServ nodes they instantiate genome processing packages;
as NetServ nodes, they implement CDN mirrors that deliver
annotation files from the Annotation Data-bases to the
processing Computing Node/Computing Cluster. These
functions can either be co-located or implemented in separated
nodes.

Computing Node/Computing Cluster: one or more
GIST computers discovered by a specific NetServ service.
They receive the Annotation files through the ActiveCDN
nodes and the genome of the patient. After executing the
pattern-matching algorithms, results are returned to the
requesting Medical Center.

Controller: A single node implementing the NetServ
GCM.

Steps of the experiments:

Step 1: A Medical Center asks a genomics core/facility to
sequence a patient’s specimen (DNA/RNA). The genomic
core/facility processes the sample and makes the data
available with or without having performed preliminary
analysis. This would consist of searching for the already
known sequences included in genome annotations for potential
changes (i.e. mutations) and similar variations.

Step 2: The service request happens though the provided
cloud interface. It triggers the NetServ node and resource
discovery procedure, which identifies the set of one or more
candidate nodes for executing the genome processing
software.

Step 3: A NetServ GCM triggers a service for transferring
the genome processing software over the selected Computing
Node/Cluster.

Step 4: The controller triggers the software modules. They
are now ready to receive input data.

Step 5: The Medical Centre sends the patient’s genome
data to the Computing Node/Cluster, implemented by means
of OpenStack.

Step 6: The NetServ ActiveCDN service downloads the
needed genomic information files from the Public
Genome/Annotation data-bases into the Computing
Node/Cluster.

Step7: The Controller triggers the service execution over
the Computing Node/Cluster.

Step 8: The processing results are returned to the Medical
Centre.

Computing Node /
Computing Cluster

Public
Genome/Annotation
Data-base

Medical
Centre

Netserv
CDN node

Private
Genome/Annotation
Data-base

Control
CDN Data
Processed Data

Controller

Figure 3 – CDN for medical applications.

VI. EXPERIMENTAL OUTCOMES

As mentioned above, the need of resorting to the CDN
paradigm for handling the illustrated scenarios derives from (i)
the expected increase in the use of genome information and
(ii) the greater speed of growth of the quantity of information
to be used against the possibility of storing and transmitting it
over the network. Thus, under the perspective of the CDN
operation, it is essential to find suitable network resource
management policies which provide both efficiency and
suitable performance.

In the envisioned experiments, we take advantage of the
balance of the two following opposing strategies:

• The NetServ CDN service struggles for pushing contents
towards applications, so as to help applications in
accessing data.

• The NetSev Discovery service struggle for distributing
application instances in suitable network positions for
minimizing network traffic, improving resource utilization
efficiency, and optimizing workload distribution.

In synthesis, through an iterative definition of the
experiment planning, we aim at identifying a suitable strategy
for:

• Determining the optimal number of the Computing
Nodes/Clusters to be used.

• Determining the optimal size of each Computer Cluster.

• Determining the suitable position of each Computer
Node/Cluster over the network.

The input quantities affecting the final result are:

• The number of service requests in a given timeframe.

• The size of the used files (genomes and/or annotations)

• The required time for having the service fulfilled.

• The geographical distribution of the requesting centres.

• The geographical location of the involved databases.

• The amount of genomes and/or annotations used in
experiments.

• The degree of similarity of different requests.

For example, if different service requests consists of
scanning a common subset of genomes according to a
common subset of annotations, the common processing can be
aggregated. Clearly, the larger the number of considered
simultaneous requests is, the lowest the probability of finding
commonalities between them is. Nevertheless, the larger the
number of considered simultaneous requests is, the higher the
CDN effectiveness is.

A further trade-off affect the CDN provisioning. From the
point of view of the service time, it is preferred to instantiate
as many mirrors as possible, very close to the Computer
Clusters. Nevertheless, overloading the network can cause
excessive consumption of its resources, which can, in turn,
cause shortage of storage capacity and bottleneck in file
propagation through the network itself.

Our experiments will be planned iteratively, through
heuristics that will sequentially explore the available degrees
of freedom according to the maximum descent direction of the
used metrics.

A. Case Study: Differential Expression.

This section illustrates a significant case study, consisting
of a genome processing to analyze Differential Expression
(DE). DE is an analysis aimed to find statistically relevant
changes in genome read counts between two different
experimental conditions [40]. The software pipeline is shown
in Figure 5.

The following software tools are used:

• FastQC, which provides a simple way to do some quality
control checks on raw sequence data coming from high
throughput sequencing pipelines [35].

• Trimmomatic performs a variety of useful trimming tasks
for paired-end and single ended data [37]. The selection of
trimming steps and their associated parameters are
provided via command line.

• STAR is an ultrafast tool for aligning sequencing reads to
long reference sequences. STAR outperforms other
aligners by a factor of >50 in mapping speed, while at the
same time improving alignment sensitivity and precision
[38].

• HTSeq is a Python package that provides infrastructure to
process data from high-throughput sequencing assays [36].
It provides API and libraries to perform DE analysis.

• In addition, also the latest human genome reference model
19 (hg19, see [39]) is used.

This pipeline has been implemented over a Linux virtual

machine. The final size of the disk image of this virtual
machine is 3GB, and it requires to allocate at least 30 GB of
RAM for executing a proper processing. The number of cores
can be defined dynamically, according to the available
resources and tolerable processing time. During the
computations, the total disk consumption, managed by
OpenStack, was up 300 GB.

In our experiment we emulated a doctor interaction with
the ARES system as follows:

• Assume a doctor needs to investigate the expression of a

gene related to, e.g., a cancer, and he selects the DE
analysis for this purpose.

• An optimization function determines the processing
location among the available PoPs.

• The implemented CDN service provides the needed
genomic data sets, including the patient’s genome, the size
of which is a 3.2 GB, together with the VM necessary to
perform the relevant processing.

• The DE analysis is done and the results is sent to the
requesting medical personnel.

The functional experiments have been executed over the

network shown in Figure 4. These experiments are quite
simple and aim to verify the correct functional implementation
of the ARES components and obtain an evidence that the
dynamic caching mechanism works and is effective. The
genomic data are initially stored onto a single server, and
caches are dynamically populated with them over time. Three
clients ask for the same service.

The overall time needed for the execution of the software
pipeline is variable according to the number of biological
samples analyzed. It approximately ranges in the interval
between 1 and 2 days. These outcomes of experimental
processing time are used to determine the remaining time

available for data and VM transfer and to define the CDN
service classes. In this regards, we have defined the approach
illustrated in Figure 6, used in ongoing experiments, that
follows a metrological approach for validating the proposed
procedure [32], [33].

In particular, the outcome of measuring the client-side
success of the procedure is the achievement of results within
the pre-established timeframe, compliant with the CDN
service deployed.

Figure 4 – Topology of the network used for experiments.

Patient genome reads
+

Control genome reads Quality Control

Patient vs Control
Differential Expression

Produce a Report

End

End

No

Trimming
Reads

Trimmomatic

FastQC

Mapping Reads
vs hg19 index

STAR + hg19

Expression count

HTSeqCustom R script Custom script

Figure 5 – Differential expression pipeline.

Each measured service time, is estimated under many
different conditions. In particular, we evaluate both the worst
case approach, when the CDN service is required for the first
time and caches are not populated with the needed data, and
also the estimate of the expected value of the service time
versus the number of requests submitted to the system in a
month. In this case, estimates are obtained by averaging
outcomes of the experiments and have been characterized by
calculating the corresponding uncertainty in terms of type A

uncertainty, i.e. standard deviation of each estimate [32]. The
validation of the test of the network consists in verifying that
obtained estimates respect the given service time with a target
reliability at least equal to 99%, i.e. that each service time
estimate is lower than the target service time with a
probability value at least equal to 0.99. Thus, the possibility of
implementing different cloud service classes can therefore be
demonstrated.

User request 1
Service time T1

CDN service mapping
and execution

Service
time < T1?

User request 2
Service time T2<T1

…

User request n
Service time Tn<Tn-1

CDN service mapping
and execution

CDN service mapping
and execution

Processing
and metadata creation

Processing
and metadata creation

Processing
and metadata creation

Service
time < T2?

Service
time < Tn?

YES

SUCCESS!

Figure 6 –Methodology used for evaluating service time performance

The project ARES is still in progress. Similar metrological
approaches, based on the GUM (Guide to the expression of
uncertainty in measurement) specifications, will be
implemented through multiple experiments, used to collect
also network-side metrics [32].

Access transparency: the set of CDN services are
accessible regardless the user locations, to be verified
experimentally. Success = successful verification for all
locations.

Location transparency: the NSIS signaling provides
transparency to any change of the repository locations.
Success=transparency verified for all PoPs.

Availability: according to the CAP theorem, a distributed
information system cannot guarantee consistency, availability,
and partition-tolerance at the same time. The achievable
availability for all CDN classes will be investigated in relation
to the tolerable service time and the metrics illustrated below.

Failure transparency or partition tolerance: CDN service
are robust to PoP and router failures. We will show how the
system can manage and overcome node failures. In particular,
the client programs will operate correctly after a server or
repository failure. Repeated failures will be emulated so as to
investigate and maximize the actual robustness. This metric is
strictly related to access transparency.

Consistency: the cache instantiation and update procedures
will guarantee metadata consistency. This metric is strictly
related to location transparency. Repeated experiments, also in
the presence of node failures, will be executed. Any
experiment will be considered successful if all caches are
synchronized with the relevant metadata.

Scalability: CDN services will allow increasing the
tolerable network load and also scale gracefully to huge ones.
Scalability will be analyzed and optimized in relation to the
suitable trade-off induced by the CAP theorem.

VII. CONCLUSIONS

In this paper we have illustrated the current cloud services
defined and implemented by the project ARES. These services
aims to offer medical and research personnel suitable ICT
tools in a networked environment for handling genome data
set. Services, organized in different classes according to the
time requirements of the situation handled, are accessible
though a cloud interface. The cloud environment is
implemented by using OpenStack. In addition to verifying the
correct execution of all the virtualized software components,
we have presented a case study relevant to the execution of a
genomic pipeline widely used for diagnostic purposes.

Ackowledgements
This work is co-funded by EU under the project ARES,

supported by GÉANT/GN3plus in the framework of the first
GÉANT open call1.

References
[1] DNA Sequencing Costs, Data from the National Human Genome

Research Institute (NHGRI), Genome Sequencing Program (GSP),
http://www.genome.gov/sequencingcosts/. Site visited on January 13,
2014.

[2] Amazon Simple Storage Services (S3), https://aws.amazon.com/s3/. Site
visited on January 13, 2014.

[3] E. Strickland, “The gene machine and me”, IEEE Spectrum, Volume: 50 ,
Issue: 32013 , pp. 30 – 59.

[4] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, “Basic
Local Alignment Search Tool,” J. Molecular Biology, vol. 215, pp. 403-
410, 1990.

[5] C. Trapnell and al, “Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks”, Nature Protocols,
7(3), 2012, p.562 2012.

[6] S.F. Altschul et al., “Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs,” Nucleic Acids
Research, vol. 25, pp. 3389-3402, 1997.

[7] Technical note: Illumina systems and software,
http://support.illumina.com/sequencing/sequencing_software/casava.ilmn.
Site visited on January 13, 2014.

[8] T.F. Smith and M.S. Waterman, “Identification of Common Molecular
Subsequences,” J. Molecular Biology, vol. 147, pp. 195-197, 1981.

[9] Y. Liu, B. Schmidt, D. L. Maskell. “CUSHAW: a CUDA compatible
short read aligner to large genomes based on the Burrows-Wheeler
transform” Bioinformatics Advance Access, published May 9, 2012.
http://www.nvidia.com/content/tesla/pdf/CUSHAW-CUDA-compatible-
short-read-aligner-to-large-genomes.pdf. Site visited on January 13, 2014.

[10] W.R. Pearson, “Searching Protein Sequence Libraries: Comparison of the
Sensitivity and Selectivity of the Smith-Waterman and FASTA
Algorithms,” Genomics, vol. 11, pp. 635-650, 1991.

[11] K. Karplus, C. Barrett, and R. Hughey, “Hidden Markov Models for
Detecting Remote Protein Homologies,” Bioinformatics, vol. 14, pp. 846-
856, 1998.

[12] A.A. Scha¨ffer et al., “IMPALA: Matching a Protein Sequence Against a
Collection of PSI-BLAST Constructed Position-Specific Score Matrices,”
Bioinformatics, vol. 15, pp. 1000-1011, 1999.

1http://www.geant.net/opencall/Applications_and_Tools/Pages/Home.aspx#ar
es

[13] S.R. Eddy, “Profile Hidden Markov Models,” Bioinformatics, vol. 14, pp.
755-763, 1998.

[14] A.E. Darling, L. Carey, and W. Feng, “The Design, Implementation, and
Evaluation of mpiBLAST,” ClusterWorld Conf. and Expo and the Fourth
Int’l Conf. Linux Clusters: The HPC Revolution, 2003.

[15] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing,
“TurboBLAST(r): A Parallel Implementation of BLAST Built on the
TurboHub,” Proc. 16th IEEE Int’l Parallel and Distributed Processing
Symp. (IPDPS), 2002.

[16] C. Oehmen and J. Nieplocha, “ScalaBLAST: A Scalable Implementation
of BLAST for High-Performance Data-Intensive Bioinformatics
Analysis,” IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 8,
Aug. 2006.

[17] N. Camp, H. Cofer, and R. Gomperts, High-Throughput BLAST, SGI
whitepaper, 2002.

[18] M. Femminella, G. Reali, D. Valocchi, R. Francescangeli, H.
Schulzrinne, “Advanced Caching for Distributing Sensor Data Through
Programmable Nodes”, IEEE LANMAN 2013, Brussels, April 10-12,
2013, invited paper.

[19] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova, “Efficient
Data Access for Parallel BLAST,” Proc. 19th IEEE Int’l Parallel and
Distributed Processing Symp. (IPDPS), 2005.

[20] O. Thorsen, B. Smith, C.P. Sosa, K. Jiang, H. Lin, A. Peters, and W.
Feng, “Parallel Genomic Sequence-Search on a Massively Parallel
System,” Proc. Fourth Int’l Conf. Computing Frontiers (CF), 2007. pp.
1607-1623, 2005.

[21] X. Fu et al., “NSIS: a new extensible IP signaling protocol suite”, IEEE
Communications Magazine, 43(10), 2005, pp. 133- 141.

[22] H. Schulzrinne, R. Hancock, “GIST: General Internet Signalling
Transport”, IETF RFC 5971, October 2010.

[23] NSIS-ka, open source NSIS implementation by Kalsruhe University,
available at: https://projekte.tm.uka.de/trac/NSIS/wiki/. Site visited on
January 13, 2014.

[24] M. Femminella, R. Francescangeli, G. Reali, H. Schulzrinne, "Gossip-
based signaling dissemination extension for next steps in signaling",
IEEE/IFIP NOMS 2012, Maui, US, 2012.

[25] OpenStack web site, http://www.openstack.org/. Site visited on January
13, 2014.

[26] M. Yandell and D. Ence, “A beginner’s guide to eukaryoticgenome
annotation”, Nature Reviews, Genetics, vol. 13, May 2012.

[27] TGen achieves 12-foldperformance improvementin processing of
genomicdata with Dell and Intel-basedHPC cluster,
http://i.dell.com/sites/doccontent/corporate/case-

studies/en/Documents/2012-tgen-10011143.pdf. Site visited on January
13, 2014.

[28] M Femminella, R Francescangeli, G Reali, JW Lee, H Schulzrinne, “An
enabling platform for autonomic management of the future internet”,
IEEE Network, 25 (6), pp. 24-32.

[29] M. Femminella, G. Reali, D. Valocchi, E. Nunzi, “The ARES Project:
Network Architecture for Deliverying and Processing Genomics Data”,
IEEE 3rd Symposium on Network Cloud Computing and Applications
(NCCA 2014), Rome, 2014.

[30] Don Preuss, “1,000 Genomes in the Cloud and NCBI Experiences”
https://respond.niaid.nih.gov/conferences/bioinformatics2012/Festival%2
0Proceedings/Preuss_1000_Genomes.pdf. Site visited on January 13,
2014.

[31] The project ARES, http://conan.diei.unipg.it/lab/index.php/research/ares.
Site visited on January 13, 2014.

[32] “Evaluation of measurement data – Guide to the expression of uncertainty
in measurement” JCGM 100:2008

[33] Nunzi, E., "Uncertainties Analysis in RTT Network Measurements: the
GUM and RFC Approaches," Advanced Methods for Uncertainty
Estimation in Measurement, 2006. AMUEM 2006. Proceedings of the
2006 IEEE International Workshop on , vol., no., pp.87,91, 20-21 April
2006

[34] P. Romano, F. Quaglia, "Design and Evaluation of a Parallel Invocation
Protocol for Transactional Applications over the Web", IEEE
Transactions on Computers, 63(2), 2014, pp. 317-334.

[35] FastQC, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Site
visited on January 13, 2014.

[36] HTSeq: Analysing high-throughput sequencing data with Python,
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html. Site
visited on January 13, 2014.

[37] Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B,
“RobiNA: a user-friendly, integrated software solution for RNA-Seq-
based transcriptomics”, Nucleic Acids Res. 2012 Jul; 40 (Web Server
issue): W622-7.

[38] A. Dobin et al, "STAR: ultrafast universal RNA-seq
aligner"Bioinformatics 2012; doi: 10.1093/bioinformatics/bts635.

[39] The human genome (hg19, GRCh37 Genome Reference Consortium
Human Reference 37 (GCA_000001405.1)).
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/. Site
visited on January 13, 2014.

[40] S. Anders and W. Huber, "Differential expression analysis for sequence
count data", Genome Biology 2010 11:R106.

