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Abstract— This paper shows the cloud services provided by 
the project ARES. The network solutions have been illustrated in 
a companion paper in the same conference. The ARES project 
aims to deploy CDN services over a broadband network for 
accessing and exchanging genomic datasets, accessible by medical 
and research personnel through a Cloud interface. This paper 
illustrates the procedure defined to access such services, also 
providing a case-study simulation to show the implementation of 
the bioinformatics pipeline included. The experimental activity in 
ARES aims to gain a detailed understanding of the network 
problems relating to its  sustainability given the increasing use of 
genomics for diagnostic purposes. The main aim is to allow an 
extensive use of genomic data through the collection of relevant 
information available from the network in the medical and 
diagnostic field diseases. 

Keywords— Genomic Big Data, Cloud Services, Genomic 
Pipelines 

I.  INTRODUCTION 

The ARES (Advanced Networking for the EU Genomic 
Research) project is proposing a new approach for the use of 
genomic data in  the medical/research field. [31].  It consists 
of a cloud-based access to genomic processing services for 
medical and research personnel. The need of this research is 
given by the massive and increasing production of genomic 
data. 

The completion of the human genome sequencing project 
represented a milestone in the field of biological and medical 
sciences. It happened about ten years ago in the framework of 
the US project Human Genome. It has been the results of 
years of expensive research activity. Although the clear 
evidence for the scientific relevance of that result, at that 
(recent) time, the possibility of handling the human genome as 
a commodity was far from imagination due to the elevated 
cost and the complexity of sequencing and analyzing complex 
genomes. Today the situation is much different. The order of 
magnitude of the cost necessary for sequencing one human 
genome is getting close to 1000 € [3]. 

The cost for sequencing both a unit of DNA and the whole 
human genome over the time has been decreasing faster than 
the Moore’s law [1]. This cost evolution is referred to as “the 

big drop”. It has begun in 2008, and it is due to the 
introduction of novel sequencing machines. Under a very 
practical viewpoint, this means that the cost per unit data 
produced decreases more rapidly than the cost for storing a 
unit data and, more importantly, for distributing a unit data. 
Hence, if the trend shown in [1] will continue for some years, 
the bottleneck of the process of effectively using the genome 
information will reside on the ICT side. This is the essential 
rationale of our research and our proposal. Nowadays, the 
limiting step is no more the sequencing capability of current 
technology but rather the ability to process large data file 
efficiently and allow remote exchange and access for meta-
analysis investigations. As proof of principle we have 
implemented a test bed for transferring and sharing genome 
sequence file and processing software for diagnostic purposes.  

In this paper we illustrate the protocols for accessing the 
cloud services and a case study relevant to a real usage of a 
genomic processing service. 

II. BACKGROUND 

A. Genome analysis tools. 

Different genome sequencing tools have been developed in 
the last decade. The analysis of such data mainly consists of 
sequence similarity detection. This detection of similarity,  is 
crucial  in both diagnostic and research activities.  BLAST and 
PSI-BLAST [4], [6], are the most popular sequence alignment 
tools. Nevertheless, the envisioned growth of genome 
databases poses some challenges to their suitability and 
reliability. Alternatives to BLAST and PSI-BLAST are,  
SSEARCH [8], CUSHAW[9], FASTA [10], CASAVA[7] ,  
SAM [11], IMPALA [12], and HMMER [13].  

Some alternative approaches have been also proposed for 
accelerating the execution of BLAST, such as its parallel 
execution on shared memory HPC, (SGI Altix [17]), 
distributed-memory HPC (IBM BlueGene/L [20]), and 
execution in clusters implemented through high-speed 
interconnections (MPP2 [16]). There are also solutions for 
executing parallel BLAST methods for general clusters [14], 
[15], [19]. In general, the objective of these approaches is to 
speed up the fulfillment of BLAST queries by resorting the 



partitioned databases. For example, the mpiBLAST package 
[14] can achieve super-linear speed-up with the size of 
databases by removing unnecessary paging. Nevertheless, 
some scalability issues illustrated in [16], along with problems 
due to result merging and I/O synchronization have not yet 
been addressed effectively [19]. 

B. Cloud and Data Services 

In recent years, Google and Amazon have struggled to 
tackle the problem of big data handling by their specific cloud 
applications [2]. For example, the Amazon S3 cloud 
computing service provides a web services interface to store 
and retrieve, namely, any amount of data. This service may be 
used to store and retrieve genome data. Nevertheless, no 
specific tools are available for optimizing the perceived 
network quality in the basis of the specific research needs (e.g. 
optimized download time and number of accomplished 
requests through dynamic VM instantiation, and CDN 
provisioning). In particular, no specific tools for handling  
genomic data set are made available. For example, a 
popularity model usable for managing data is not available. 
For other data types, such as a video clip, the popularity 
evolution typically increases until a maximum is reached. 
Then, it unavoidably decreases over time. For genomes, the 
popularity evolution does not have a typical known pattern, as 
sketched in Figure 1. A genome is a plentiful source of 
information, most of which is still unveiled. It may happen 
that the interest over an old genome of a dead man is more 
interesting than a genome recently sequenced. The popularity 
could also decrease and increase again after some time 
according to the research dynamics in a totally unpredictable 
manner. Thus, in the short and medium terms the evolution of 
the available data in the future networks can be modeled as a 
pure-birth process. Therefore, beyond the clear need to have 
large amounts of storage capacity, specific solutions for 
managing data storage are expected. The proposal includes a 
dynamic cache management [18], which adapts to the request 
pattern of genome data. 
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Figure 1 – Possible popularity evolution over time.   

III. NETWORK ASPECTS 

A detailed description of the ARES network architecture is 
reported in a companion paper submitted to the same 
conference [29]. In order to clarify the working context of this 
paper, we provide a short and basic description of network 
architecture for the sake of consistency of this paper.  

As mentioned above, the user interface of the system is 
based on a cloud support. Behind this interface, the content 
made available in the cloud is managed through a novel 
content distribution network (CDN). This CDN is 
implemented by means of a distributed network of servers and 
file storage devices, typically referred to as caches. Their 
dynamic management aims at improving the user perception 
of the cloud service. This network architecture could also be 
compliant with the Application Delivery Network paradigm 
[34]. 

The core protocol of this dynamic management is the NSIS 
suite of protocols, specified by the IETF RFC 4080 [21].  It 
consists of two layers: 

- NSIS transport layer protocol (NTLP), which is a generic 
signaling transport layer used for node discovery and 
message sending. 

- NSIS signaling layer protocol (NSLP), which is the upper 
layer, which implements the specific signaling application. 
 

GIST (General Internet Signaling Transport protocol, [22]) 
is the NTLP implementation proposed by the IETF. It 
implements a set of basic capabilities, including node 
discovery and message transport and routing. It provides end-
to-end signaling, that allows sending signaling messages 
towards a destination, and path-coupled signaling, that allows 
installing states in the NSIS peers over the path to the 
destination. 

In [24], we have illustrated our implementation of a further 
routing paradigm, implementing off-path signaling. It allows 
sending signaling message to an arbitrary set of peers, 
regardless the user data flow. This mechanism is widely used 
in ARES to discover the available network resource and to 
find the optimal location where the genomic processing is 
implemented, as shown in what follows. 

The ARES solution is implemented through a massive use 
of service modularization and virtualization provided by the 
NetServ service deployment architecture [28]. The runtime 
environment executing services is provided by a virtual 
services framework, which manages access to service building 
blocks and other network resources. Applications use building 
blocks to drive all network operations, with the exception of 
the IP packet transport.  

The components of the NetServ architecture are: 

- Service containers, which are user-space processes. Each 
container executes a Java Virtual Machine (JVM), running 
the OSGi framework for hosting service modules, which 
are Java archive files, also referred to as bundles.  



- NetServ controller, which installs modules in service 
containers, or remove them, at runtime. In more detail, it 
coordinates the NSIS signaling daemons, the service 
containers, and the node transport layer. It makes use of 
the netfilter library through the iptables tool. Any packet 
matching with one of the service rules is routed from the 
network interface to a service container process, which is 
executed in user space. The NetServ controller is also in 
charge of setting up and tearing down service containers, 
authenticating users, fetching and isolating modules, and 
managing service policies. 

- Signaling module, based on an extended version of NSIS-
ka, an open source NSIS implementation by the Karlsruhe 
Institute of Technology [23].  

- The NetServ repository, which stores a pool of modules 
deployable through NetServ signaling. 
 
The cloud operation is managed through OpenStack, 

which is a cloud management system that allows using restful 
APIs to control and manage the execution of virtual machines 
(VMs) on a server pool [25]. It allows retrieving information 
about the computational and storage capabilities of both the 
cloud and the available VMs. Each VM can expose, through 
OpenStack, the required configuration, which allows mapping 
the minimum required computational capabilities for a specific 
processing service into the hardware configuration for the VM 
that executes the service.  

OpenStack allows also using a restful API to inject new 
VMs into the pool, thus allowing the system to retrieve the 
relevant files from other locations. Furthermore, OpenStack is 
not bounded to the use of a single hypervisor, but it can make 
use of different drivers to support different formats of virtual 
machines and hypervisors, such as Q-emu, VMWare, KVM, 
Xen, LXC and Hyper-V. 

Our architectural solution thus combines different cloud 
paradigms, as shown in Figure 2. We have implemented an 
optimized solution, the core of which is an optimization 
algorithm that determines the most suitable PoP for executing 
the software pipeline implementing the desired service. From 
the perspective of the medical user, the access is totally 
equivalent to a Software-as-a-Service (SaaS) cloud delivery 
model. The software components are transferred from the 
most convenient location, being it either a static repository or 
a dynamic cache managed by a NetServ service. Finally, the 
virtual machines executing the desired genomic software 
pipeline uses the computing resources made available through 
a Infrastructure-as-a-Service (IaaS) cloud model.  

IV. CLOUD SERVICE CLASSES 

The -omics (whole-genome, whole-exome, transcriptome) 
data processing is typically performed through a pipeline of 
different software packages, [26]. The input files are:  

a)  FASTQ files containing sequencer output raw data; 
b) FASTA files containing genome/exome/transcriptome 

sequences;  
c) annotations files containing the list of gene sequences.   
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Figure 2 – Networking and service paradigms contributing to the optimized 

solution.   

Even if the patient’s genome may be locally stored, all 
other files must be downloaded from different databases. The 
overall amount of data ranges from few GB to tens of GB. 

When all the files are available in a selected PoP, the 
relevant processing can start, and it may take different hours to 
generate the desired result. The time taken for having this 
result could take some hours to same days. In the view of the 
increasing diffusion of genomic data, this poses two technical 
challenges to network designers, the minimization of the 
service delivery time when a very serious disease must be 
treated and the minimization of the overall network traffic.  In 
regards to the former objective, some initiatives aim to 
decrease the processing time. For example, the Translational 
Genomics Research Institute (Phoenix, AZ, USA) adopts a 
cluster of several hundreds of CPU cores [27] to significantly 
decrease the processing time of the tremendous volume of data 
relevant to the neuroblastoma. While this approach may be 
expected in a small number of prestigious organizations, it 
cannot be generally adopted when genomic processing will be 
largely needed in most of countries. In regard to service time, 
a lot of research is urgently needed on the networking side. 
For example, the Beijing Genomics Institute (Bejing, China), 
which produces 2,000 human genomes a day, instead transmit 
them through the Internet or other networks, sends computer 
disks containing the data, via express courier [30]. 

We believe that a significant contribution to the 
minimization of the service delivery time can be provided by 
suitably managing shared computing and storage resources 
and accessing them through the illustrate cloud management 
operation. 

In addition, we are implementing different cloud service 
classes according to the severity of the handled clinical 
situation. For example, peripheral neuroblastic tumours 
(Neuroblastoma, Ganglioneuroblastoma, Ganglioneuroma) 
require a very rapid diagnosis, while breast cancer and other 
solid cancers may be handled in some days. Neuropsychiatric 



conditions can be processed in a longer time-window (e.g. 2-3 
weeks) 

For this reason, we are implementing different cloud 
service classes, as follows: 

• Minimum delay CDN services, to be used for handling 
very urgent situations. In this case optimization functions 
are configured for generating the shortest service delivery 
time. 

• Short delay CDN services for handling less urgent 
situations, to be used for handling serious situations, but 
with sufficient tolerance in order to introduce some 
optimization of the network resources so as to increase the 
number of simultaneous medical requests processed by 
using the network resources. 

• Balanced network load cloud services for handling all 
other situations. This class refers to delay tolerant 
situations, typically relevant to research purposes and not 
for diagnosis. In this case the optimization functions aim at 
maximizing the number of simultaneous medical requests 
processed by using the network resources. 

 

Table I reports some examples of tolerable times for 
medical personnel requiring support from ARES. These 
tolerable times include the CDN service time, in addition to 
other times which depends on other medical requirements, 
such as the type of the sequencing, the portion of the genome 
to be analyzed, the processing software used and the reliability 
of results. Through the expertise of the researchers involved in 
ARES, we are translating these times in CDN service classes. 

TABLE I.  EXAMPLE OF TOLERABLE TIMES 

Diseases         T im e (day s)

Neuroblastom a        2 

Bre ast Cancer         7 

Colon Cance r         7 

Acute  Lym phoblastic Le ukem ia     4 

Le ukem ias         4 

Lym phom as          4 

M yelom a          7 

Cerv ical Cancer        7 

Pancre atic Cancer        4 
 

V. EXPERIMENTAL CDN SCENARIOS 

Figure 3 sketches the experiment that will be executed to 
demonstrate the effectiveness of our approach for supporting a 
generalized use of genomic information in the future medical 
system.  In what follows we illustrate the involved entities and 
the steps for the execution of the experiment.  

We stress that in this activity we will use publicly 
available genomic files with no reference to the subject’s 

identity , and no information about current health conditions, 
sexual lifestyle, ethnicity, political opinion, religious or 
philosophical conviction. 

Involved Entities: 

Public Genome/Annotation Database: database storing 
publicly available genomic informations.  

Medical Centers: we assume the existence of different 
medical centers that make use of genomic annotations. 
Diagnoses are done by processing genomics data of patients 
through pattern-matching algorithms. Desired patterns are 
taken from genome annotations.  

Private Genome/Annotation Data-base: we assume that 
each Medical Center stores patients’ genome information 
within a local private data-base. This information is not 
publicly accessible (Nevertheless, the experiments in ARES 
will be done by using publicly available genomic information 
only, that will be used also to implement the private data-bases 
without compromising the significance of the results). 

NetServ CDN nodes: These nodes have a threefold role. 
As GIST enabled nodes, they discover network resources; as 
NetServ nodes they instantiate genome processing packages; 
as NetServ nodes, they implement CDN mirrors that deliver 
annotation files from the Annotation Data-bases to the 
processing Computing Node/Computing Cluster. These 
functions can either be co-located or implemented in separated 
nodes. 

Computing Node/Computing Cluster:  one or more 
GIST computers discovered by a specific NetServ service. 
They receive the Annotation files through the ActiveCDN 
nodes and the genome of the patient. After executing the 
pattern-matching algorithms, results are returned to the 
requesting Medical Center. 

Controller:  A single node implementing the NetServ 
GCM.   

Steps of the experiments: 

Step 1: A Medical Center asks a genomics core/facility to 
sequence a patient’s specimen (DNA/RNA). The genomic 
core/facility processes the sample and makes the data 
available with or without having performed preliminary 
analysis. This would consist of searching for the already 
known sequences included in genome annotations for potential 
changes (i.e. mutations) and similar variations.  

Step 2: The service request happens though the provided 
cloud interface. It triggers the NetServ node and resource 
discovery procedure, which identifies the set of one or more 
candidate nodes for executing the genome processing 
software.  

Step 3: A NetServ GCM triggers a service for transferring 
the genome processing software over the selected Computing 
Node/Cluster.  

Step 4: The controller triggers  the software modules. They 
are now ready to receive input data. 



Step 5: The Medical Centre sends the patient’s genome 
data to the Computing Node/Cluster, implemented by means 
of OpenStack. 

Step 6: The NetServ ActiveCDN service downloads the 
needed genomic information files from the Public 
Genome/Annotation data-bases into the Computing 
Node/Cluster.  

Step7: The Controller triggers the service execution over 
the Computing Node/Cluster. 

Step 8: The processing results are returned to the Medical 
Centre.  
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Figure 3 – CDN for medical applications. 

VI. EXPERIMENTAL OUTCOMES  

As mentioned above, the need of resorting to the CDN 
paradigm for handling the illustrated scenarios derives from (i) 
the expected increase in the use of genome information and 
(ii) the greater speed of growth of the quantity of information 
to be used against the possibility of storing and transmitting it 
over the network. Thus, under the perspective of the CDN 
operation, it is essential to find suitable network resource 
management policies which provide both efficiency and 
suitable performance. 

In the envisioned experiments, we take advantage of the 
balance of the two following opposing strategies: 

• The NetServ CDN service struggles for pushing contents 
towards applications, so as to help applications in 
accessing data. 

• The NetSev Discovery service struggle for distributing 
application instances in suitable network positions for 
minimizing network traffic, improving resource utilization 
efficiency, and optimizing workload distribution. 
 

In synthesis, through an iterative definition of the 
experiment planning, we aim at identifying a suitable strategy 
for: 

• Determining the optimal number of the Computing 
Nodes/Clusters to be used. 

• Determining the optimal size of each Computer Cluster. 

• Determining the suitable position of each Computer 
Node/Cluster over the network. 

 
The input quantities affecting the final result are: 

• The number of service requests in a given timeframe. 

• The size of the used files (genomes and/or annotations) 

• The required time for having the service fulfilled.  

• The geographical distribution of the requesting centres. 

• The geographical location of the involved databases. 

• The amount of genomes and/or annotations used in 
experiments. 

• The degree of similarity of different requests. 
 

For example, if different service requests consists of 
scanning a common subset of genomes according to a 
common subset of annotations, the common processing can be 
aggregated. Clearly, the larger the number of considered 
simultaneous requests is, the lowest the probability of finding 
commonalities between them is. Nevertheless, the larger the 
number of considered simultaneous requests is, the higher the 
CDN effectiveness is. 

A further trade-off affect the CDN provisioning. From the 
point of view of the service time, it is preferred to instantiate 
as many mirrors as possible, very close to the Computer 
Clusters. Nevertheless, overloading the network can cause 
excessive consumption of its resources, which can, in turn, 
cause shortage of storage capacity and bottleneck in file 
propagation through the network itself.    

Our experiments will be planned iteratively, through 
heuristics that will sequentially explore the available degrees 
of freedom according to the maximum descent direction of the 
used metrics.  

A. Case Study: Differential Expression. 

This section illustrates a significant case study, consisting 
of a genome processing to analyze Differential Expression 
(DE). DE is an analysis aimed to find statistically relevant 
changes in genome read counts between two different 
experimental conditions [40]. The software pipeline is shown 
in Figure 5.  

The following software tools are used: 



• FastQC, which provides a simple way to do some quality 
control checks on raw sequence data coming from high 
throughput sequencing pipelines [35]. 

• Trimmomatic performs a variety of useful trimming tasks 
for paired-end and single ended data [37]. The selection of 
trimming steps and their associated parameters are 
provided via command line. 

• STAR is an ultrafast tool for aligning sequencing reads to 
long reference sequences. STAR outperforms other 
aligners by a factor of >50 in mapping speed, while at the 
same time improving alignment sensitivity and precision 
[38]. 

• HTSeq is a Python package that provides infrastructure to 
process data from high-throughput sequencing assays [36]. 
It provides API and libraries to perform DE analysis. 

• In addition, also the latest human genome reference model 
19 (hg19, see [39]) is used.   

 
This pipeline has been implemented over a Linux virtual 

machine. The final size of the disk image of this virtual 
machine is 3GB, and it requires to allocate at least 30 GB of 
RAM for executing a proper processing. The number of cores 
can be defined dynamically, according to the available 
resources and tolerable processing time. During the 
computations, the total disk consumption, managed by 
OpenStack, was up 300 GB. 

In our experiment we emulated a doctor interaction with 
the ARES system as follows: 

 
• Assume a doctor needs to investigate the expression of a 

gene related to, e.g., a cancer, and he selects the DE 
analysis for this purpose.  

• An optimization function determines the processing 
location among the available PoPs. 

• The implemented CDN service provides the needed 
genomic data sets, including the patient’s genome, the size 
of which is a 3.2 GB, together with the VM necessary to 
perform the relevant processing. 

• The DE analysis is done and the results is sent to the 
requesting medical personnel.  

 
The functional experiments have been executed over the 

network shown in Figure 4. These experiments are quite 
simple and aim to verify the correct functional implementation 
of the ARES components and obtain an evidence that the 
dynamic caching mechanism works and is effective. The 
genomic data are initially stored onto a single server, and 
caches are dynamically populated with them over time. Three 
clients ask for the same service. 

The overall time needed for the execution of the software 
pipeline is variable according to the number of biological 
samples analyzed. It approximately ranges in the interval 
between 1 and 2 days. These outcomes of experimental 
processing time are used to determine the remaining time 

available for data and VM transfer and to define the CDN 
service classes. In this regards, we have defined the approach 
illustrated in Figure 6, used in ongoing experiments, that 
follows a metrological approach for validating the proposed 
procedure [32], [33]. 

In particular, the outcome of measuring the client-side 
success of the procedure is the achievement of results within 
the pre-established timeframe, compliant with the CDN 
service deployed.  

 

 
Figure 4 – Topology of the network used for experiments. 
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Figure 5 – Differential expression pipeline. 

 

Each measured service time, is estimated under many 
different conditions. In particular, we evaluate both the worst 
case approach, when the CDN service is required for the first 
time and caches are not populated with the needed data, and 
also the estimate of the expected value of the service time 
versus the number of requests submitted to the system in a 
month. In this case, estimates are obtained by averaging 
outcomes of the experiments and have been characterized by 
calculating the corresponding uncertainty in terms of type A 



uncertainty, i.e. standard deviation of each estimate [32]. The 
validation of the test of the network consists in verifying that 
obtained estimates respect the given service time with a target 
reliability at least equal to 99%, i.e. that each service time 
estimate is lower than the target service time with a 
probability value at least equal to 0.99. Thus, the possibility of 
implementing different cloud service classes can therefore be 
demonstrated.  
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Figure 6 –Methodology used for evaluating service time performance  

 

The project ARES is still in progress. Similar metrological 
approaches, based on the GUM (Guide to the expression of 
uncertainty in measurement) specifications, will be 
implemented through multiple experiments, used to collect 
also network-side metrics [32].  

Access transparency: the set of CDN services are 
accessible regardless the user locations, to be verified 
experimentally. Success = successful verification for all 
locations.  

Location transparency: the NSIS signaling provides 
transparency to any change of the repository locations.  
Success=transparency verified for all PoPs. 

Availability: according to the CAP theorem, a distributed 
information system cannot guarantee consistency, availability, 
and partition-tolerance at the same time. The achievable 
availability for all CDN classes will be investigated in relation 
to the tolerable service time and the metrics illustrated below.  

Failure transparency or partition tolerance: CDN service 
are robust to PoP and router failures. We will show how the 
system can manage and overcome node failures. In particular, 
the client programs will operate correctly after a server or 
repository failure. Repeated failures will be emulated so as to 
investigate and maximize the actual robustness. This metric is 
strictly related to access transparency.  

Consistency: the cache instantiation and update procedures 
will guarantee metadata consistency. This metric is strictly 
related to location transparency. Repeated experiments, also in 
the presence of node failures, will be executed. Any 
experiment will be considered successful if all caches are 
synchronized with the relevant metadata. 

Scalability: CDN services will allow increasing the 
tolerable network load and also scale gracefully to huge ones. 
Scalability will be analyzed and optimized in relation to the 
suitable trade-off induced by the CAP theorem. 

VII. CONCLUSIONS 

In this paper we have illustrated the current cloud services 
defined and implemented by the project ARES. These services 
aims to offer medical and research personnel suitable ICT 
tools in a networked environment for handling genome data 
set. Services, organized in different classes according to the 
time requirements of the situation handled, are accessible 
though a cloud interface. The cloud environment is 
implemented by using OpenStack. In addition to verifying the 
correct execution of all the virtualized software components, 
we have presented a case study relevant to the execution of a 
genomic pipeline widely used for diagnostic purposes. 
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