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Abstract—In recent years scientific computing has evolved 
into a massive usage of cloud computing, due to its flexibility in 
managing computing resources. In this paper, we focus on 
genomic data processing, which is rapidly gaining momentum in 
research and medical activities. The main characteristics of these 
data sets is that not only the number of available genome files is 
becoming extremely large, but also each individual data set is 
significantly large, in the order of tens of GB. Hence, a wide 
diffusion of cloud-based genomic data processing will have a 
significant impact on network resources, since each processing 
request will require the transfer of tens of GBs into computing 
nodes. To face this issue, in this paper we propose a resource 
discovery framework which provides decision agents with the 
needed information for selecting the most suitable computing 
nodes. We have implemented this resource discovery function in 
a distributed fashion, and extensively tested it in a lab testbed 
consisting of about 70 nodes. We found that the overhead of the 
proposed solution is negligible in comparison with the amount of 
transferred data. 

Keywords—cloud computing; genomics processing; distributed 
framework; resource discovery protocols; off-path signaling; NSIS 

I. INTRODUCTION  
In recent years, the implementation of scientific computing 

platforms have evolved from the use local cluster-based 
computing, to the use of distributed grid computing and, more 
recently, of cloud computing infrastructure [13]. This evolution 
is due to the improved flexibility in managing computing 
resources that this latest paradigm offers over the other ones. 
However, scientific computing is very different from typical 
cloud-based applications, ranging from hosting multimedia 
servers to deploying storage facilities. The main differences 
include the volume of data managed by scientific applications 
and/or CPU requirements, which could be of some orders of 
magnitude larger than in other types of applications. In 
addition, scientific computing applications are highly 
heterogeneous. For example, they may consist of platforms 
used to storage and process the output of high energy physics 
experiments, which need to be co-located with experimental 
facilities in order to timely collect the huge amount of data, or 
climate changes simulations, which needs high performance 
computing architectures, or genomic data sets processing, 

which may require more modest amounts of computing 
resources for a single execution, with a highly increasing 
number of executions to be implemented, with a size of the 
input files easily reaching tens of GBs.  

In this paper, we focus on genomic data processing, which 
is rapidly gain momentum in research and medical activities, 
due to the reduction in the DNA sequencing costs [1]. The 
main characteristics of these data sets is that not only the 
number of available genome files is becoming extremely large, 
but also each data set is significantly large, in the order of tens 
of GB. This problem is referred to as Big2 data problem, and its 
importance increases over time. In fact, it is expected that in 
the next few years all newborns will be sequenced and the 
medical science will build upon genome-processing outcomes. 
Clearly, it is not realistic to assume that each hospital will be 
able to acquire a large computing facility (private cloud) to 
cope with the internal processing demand. Thus, the use of 
public cloud-based processing services will be the obvious 
solution [11]. Hence, it is evident that the suitable management 
of genomic data will be essential not only for storage services, 
but also for their processing and their transfer. In fact, a wide 
diffusion of cloud-based genomic data processing will have a 
significant impact on network resources, since each processing 
request will require the transfer of many GBs of data into 
computing nodes in data centers of cloud providers. 

In this paper we propose a discovery protocol of cloud 
resources [22][29], by providing decision agents with a number 
of context information. This information may consist of 
position and availability of processing resources (CPU, RAM, 
storage), input data to be processed, auxiliary files (e.g. 
annotations [12]), and image files of the virtual machines 
(VMs) hosting the genomic software packages used to process 
genomics data. In fact, the types of genomic processing 
(implemented through the combination of different programs, 
referred to as  genomic pipelines) that can be executed over a 
single genome is quite large; just to have an idea, the interested 
reader can find a non-exhaustive list reported in Table 1 of 
[12]. Thus, it is not realistic to expect that each datacenter of a 
cloud provider can simultaneously host all VMs needed for any 
possible request.  

Our discovery protocol leverages the functions offered by 
the Next Steps in Signaling (NSIS) framework [2][3]. In more This work is supported by EU under the project ARES, accepted in the
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detail, we use the functions offered by the recently defined off-
path extension to the NSIS protocol suite, initially presented in 
[8] and further refined in [9]. This solution allows 
disseminating signaling over network areas of nearly arbitrary 
shape. By leveraging the interception capabilities of the 
signaling transport layer of NSIS, this signaling dissemination 
protocol is highly efficient, and may allow finding resources 
which are close to a given network path. In the considered 
scenario, the path under consideration could be, for instance, 
the one connecting the repository storing the needed VM 
images and the data center storing the input data. Since 
computing clusters in datacenters able to host VMs cannot be 
on the IP path connecting two servers (only routers are located 
on path), a signaling protocol with off-path discovery 
capabilities is used to discover data centers with both sufficient 
computing capabilities and a position suitable in order to 
minimize the overall network traffic exchanged. When this 
information is reported back to a decision agent, the latter can 
execute an optimization algorithm for selecting a datacenter. 

Our solution can be classified as a peer-to-peer (P2P) 
resource discovery solution [25], with the feature that, being 
based on NSIS, it is able to couple with specific network paths. 
Classic P2P-based approaches [28][23] offer little or no 
support to provide proximity-based solutions, as stated in [26], 
trying just to limit the network overhead. Hierarchical solutions 
enable the efficient discovery of the resources belonging to one 
super-peer, but when more than one super-peers are involved, 
the problem is not trivial. Other solutions, recently proposed, 
make use of a proper ontology for service discovery 
[18][19][20], without considering path proximity issues. In 
[24], the authors propose an abstraction layer to discover the 
most appropriate infrastructure resources, which is then used in 
constraint-based approach applied to a multi-provider cloud 
environment. However, proximity issues are loosely handled, 
by simply referring to location requirements. Other solutions 
have been specifically designed for grid computing platforms, 
such as [21][27]. In [21], routing hops are considered, but they 
are relevant to the grid overlay. In [27], again the effort is to 
minimize the amount of message on the grid overlay, and not 
to find nodes close to specific locations or paths.  

We have implemented the proposed discovery solution in a 
lab testbed consisting of about 70 nodes, and have executed 
extensive tests. The obtained results prove that the network 
overhead of the proposed solution is negligible when compared 
with the size of data files to be exchanged. 

The paper is organized as follows. Section II presents some 
background on NSIS, and the reference scenario, which is 
represented by the project ARES [10]. Section III provides 
algorithmic and protocols details of our solution, and Section 
IV presents the results of lab experiments. Finally, we draw our 
concluding remarks in Section V. 

II. BACKGROUND AND REFERENCE SCENARIO 

A. Background on NSIS protocols and off-path extension 
The NSIS protocol suite divides the signaling functions into 

two layers [3]. The upper layer, called NSIS Signaling Layer 
Protocol (NSLP), implements the application signaling logic. 

The lower layer, called NSIS Transport Layer Protocol 
(NTLP), delivers the NSLP messages to the next NSIS node on 
path towards a given destination. The General Internet 
Signaling Transport (GIST) is the IETF-defined version of the 
NTLP [5]. GIST transport services make use of existing 
protocols in the TCP/IP stack. GIST only delivers NSLP 
messages hop-by-hop between pairs of neighboring NTLP 
signaling nodes, whereas the end-to-end signaling functions, if 
needed, are provided by NSLP. 

Before starting a session, GIST peers have to create a 
Message Association (MA) by using the information 
transported in the GIST packets, such as the unique identifier 
of the GIST node (Peer Identity) and one of its IP addresses. 

Although IETF has standardized only two NSLP protocols 
(Quality-of-Service signaling and NAT/firewall traversal), 
others have been implemented , such as the NetServ NSLP [7]. 

NSIS has been primarily designed for managing states over 
nodes lying on data paths. For this purpose, NTLP messages 
may be intercepted at NSIS-capable nodes on path. In 
particular, the GIST protocol allows specifying messages 
routing policies through message routing methods (MRMs). 
Two MRMs are currently specified in GIST RFCs: (i) Path-
Coupled MRM, which routes signaling messages through the 
data path, and (ii) Loose End MRM, used for preconditioning 
states in middleboxes when data destinations lie behind them.  

GIST messages include a Message Routing Information 
(MRI) object, which allows NSIS nodes to identify the MRM 
to be used. For example, in case of a Path-Coupled MRM, 
GIST packets are intercepted by NSIS nodes on-path and then 
re-sent towards the destination, after being processed by the 
NSLP entities. 

The modular architecture of NSIS and GIST allows 
extending them, also defining new MRMs, as specified in [4]. 
In [8][9] we have extended the signaling capabilities of NSIS 
with off-path features by defining a new MRM. This extension 
requires the definition of a GIST peer discovery protocol for 
making each GIST node aware of its GIST peers. By using the 
information collected by this protocol, we defined new delivery 
strategies of signaling messages, which exploit the signaling 
interception capabilities of GIST. 

In this work, we use a specific off-path delivery strategy 
defined in [8][9], the so-called hose mode. It consists of 
delivering NSIS messages to all NSIS nodes that are at a 
distance, expressed in IP hops, lower than or equal to the hose 
radius from each node of the data path connecting the sender 
with the signaling destination. In practice, each NSIS node on 
the data path is responsible of disseminating signaling to nodes 
at a distance no larger than the radius (bubble mode). Hence, 
the hose consists of a sequence of adjacent bubbles. As for the 
algorithm used to implement the proposed functions, in this 
paper we consider the GIST discovery protocol named Leaf, 
which provides stability and low overhead, whereas the 
signaling dissemination is carried out with the GIST Flooding 
strategy. The interested reader can find more details in [9]. 

B. Reference scenario: the ARES project 
The reference scenario of this paper is the research project 



ARES (Advanced networking for EU genomic RESearch [10]), 
which aims to implement cloud-based processing facilities in 
the points of presence (PoPs) of the Géant network [17]. Thus, 
the ARES framework can be regarded as an application 
delivery network (ADN, [14]), and the Géant network as a 
cloud provider with multiple datacenters. 

We assume that each PoP has a certain amount of storage 
space and computational capabilities hosted in one or more 
servers and managed through OpenStack [16]. In this 
virtualized infrastructure, we also assume that a specific node 
of the computing cluster in the PoP executes a VM that hosts 
the NetServ environment [7]. This solution has the advantage 
of being plug&play, since adding just a VM is straightforward 
and do not require any change in the management of the 
computing infrastructure. In addition, it allows deploying the 
same service architecture also with different cloud 
management systems, since it is necessary to adapt just a 
NetServ service. 

NetServ is a solution for in-network service modularization 
and virtualization. The node architecture is suitable for any 
type of nodes, such as routers, servers, set-top boxes, and user 
equipment. Its architecture is targeted for in-network 
virtualized service containers and a common execution 
environment for network services. In ARES, NetServ services 
are used as content caches [15], to limit the overhead of 
transferring large genomic related files, and to implement 
service management functions, to interact with the OpenStack 
framework. NetServ caching service can be also hosted in 
routers (an effort to port NetServ into Juniper routers is 
currently in progress). The control plane of NetServ uses the 
NSIS signaling to coordinate service execution and to hot 
deploy service modules in surrounding NetServ nodes. 

III. DISCOVERY FRAMEWORK 
The proposed discovery framework is based on the off-path 

extension of NSIS, and specifically of GIST. In more detail, we 
designed an NSLP with at least one type of message, named 
Query, and the related answer (QueryResponse). It is used to 
collect binary information (true or false) on the status of the 
recipients, which are all the NSIS enabled nodes in the hose 
surrounding the IP paths between the sender and the 
destination. Clearly, this behavior can be extended to enable 
more sophisticated types of queries. The structure of these 
messages is schematized in Fig. 1. The payload of the 
QueryResponse is returned to the local application that 
triggered the signaling. 

 

Query  =  NSLP-header 
  [Application-requirement list] 
  [Content-Id list] 
 
QueryResponse =  NSLP-header 
  ResponseWrapper stack 
 
ResponseWrapper  =  common-header 
  Node-Id 
  Depth 
  Response code 
 
Fig. 1 – NSLP packets format. 

From Fig. 1, it is clear that this type of Query can be used 
for searching both nodes storing a desired content (caches or 
original repositories), and datacenters suitable for executing 
computations, thus satisfying specific, minimum requirements. 

Fig. 2 shows the inter process communication between the 
involved framework entities of a forwarder node, when it 
receives an Query message, routed through an hose by GIST. 
The involved entities are the NTLP (GIST), the newly 
designed NSLP, and the application managing the data. 

After the NTLP handshake, described in [5], the NSLP data 
are delivered to GIST, which provides to send them to the 
NSLP. The NSLP identifies the message type, extracts the 
application payload and passes it to the Application instance 
(steps 1-4 in Fig. 2). The Application processes the query and 
returns the response code to the NSLP, which provides to store 
it (steps 5-7 in Fig. 2). Meanwhile, the NTLP is in charge of 
forwarding the Query message through the hose. It identifies 
the next-hop destinations and starts a GIST hand-shake with 
them. Each hand-shake triggers the delivery of a 
MessageStatus from the NTLP to the NSLP [5]. This message 
notifies the NSLP that the Query has been forwarded toward a 
new destination and that a Response message is expected from 
that destination. By this mean, the NSLP can maintain a 
counter, which stores the number of App-Response messages 
the NSLP must receive before it can forward its response 
upstream (steps 8-10 in Fig. 2). 

During the GIST handshake, if a next-hop destination has 
received the same App-Query message from another node, it 
will answer the GIST query message with a GIST off-path-
duplicate error, thus aborting the handshake [9]. This error is 
reported to the NSLP using another MessageStatus, which 
triggers the decrease of the response counter (steps 11-13 in 
Fig. 2). If the NTLP starts m GIST hand-shakes and receives k 
GIST off-path-duplicate errors, the NSLP will wait for m-k 
responses before forwarding its response upstream (Fig. 2, 
steps 1-16). Each time the NSLP receives an App-Response, it 
adds the received stack to a local response stack and 
decrements the response counter (steps 17-19 in Fig. 2). Upon 
receiving the last response, which decreases the response 
counter to zero (i.e., all expected responses arrived), the NSLP 
adds its own ResponseWrapper to the stack and forwards the 
Response message upstream (Fig. 2, steps 20-22), i.e. to the 
GIST peer from which it initially received the Query. 

During the responses collection, the NSLP is also in charge 
of maintaining the Depth field of each ResponseWrapper 
object it receives, depicted in Fig. 1. This object, along with the 
Node-Id object and the RespondeCode, allows the signaling 
initiator to compute a data structure which contains both the 
application information and the hose topology. During the 
steps 7 in Fig. 2, the NSLP initializes its ResponseWrapper 
with data provided by the local Application (step 6 in Fig. 2), 
its own Node-Id, and a Depth field containing the value 0. 
During the step 19 of Fig. 2, the Depth field of all the received 
wrappers is increased by 1, before adding it to the local stack. 
Fig. 3 shows the stacks contained in each Response message 
exchanged when a Query is sent through an hose with radius 2 
from R1 to R5. The response code field is omitted for 
readability. It is clear that, using this simple rule on the tree of 



Fig. 3, the router R1 can infer the hose structure which is 
depicted with explicit indentation. In this figure, the label DCi 
indicates a datacenter (thus an off-path node), whereas a label 
Rj indicates a router. 

With reference to the scenario of the ARES project, 
described in section II.B, we consider a quite refined search 
process, consisting of three steps. The first two steps use the 
hose signaling illustrated above.  

In the first step, the ARES decision agent, known as GCM 
(genomic CDN manager [10]), triggers a hose signaling, on the 
VM repository application, towards the node storing the 
genomic data sets to be processed. In addition, a further 
signaling is triggered also on the repository storing the 
auxiliary files, needed for pipeline computation [10], towards 
both VM repository and genomics data sets storage. This first 
set of hose signaling is used to identify the potential 
datacenters close to any of the three involved paths, and 
satisfying the minimum requirements indicated in the payload 
of the Query message (see the Application-requirement list 
field in Fig. 1). When the application which has sent the 
signaling obtains the QueryResponse messages, it forwards it 
to the GCM, which can thus know all the identities of the 
datacenters able to support the requested processing.  

The further step is to trigger, always from the GCM to the 
same nodes of the previous step, additional hose signaling to 
identify the potential locations (original repository or caches) 
where cacheable contents (VM image files or auxiliary files) 
could be stored. In this case, the searched content is carried in 

the Content-Id list field of the Query message (see again Fig. 
1). Again, when the application which has sent the signaling 
obtains the QueryResponse messages, it forwards it to the 
GCM, which can thus know all the locations where the data 
needed for the computation reside.  

In the third step, the GCM communicates the identities of 
the nodes storing data to each datacenter controller (local 
OpenStack interface bundle, LOIB, in the ARES architecture, 
see [10]), which will measure the distance (in terms of IP hops 
or network latency) from each data location. Note that in most 
of cases this measure is already present in the node at the GIST 
layer, since it is collected during the initial gossip discovery 
phase of the GIST protocol itself (see section III.A of [9] for 
details). Thus, the application bundle (LOIB) will simply use a 
GIST API to locally retrieve this information. Then, the LOIB 
selects, for each type of data (genomics data set, auxiliary files, 
VM image files) the location at the lowest distance, and returns 
it to the GCM. When the GCM has retrieved all the response, it 
has a quite complete picture of the network, including 
computing resources, network distance, and content 
availability, and it can run an optimization function to select 
the datacenter for executing the needed processing. 

IV. PERFORMANCE EVALUATION 
In this section, we present the overhead of a single hose 

Query, measured on a topology of 71 real nodes. We used 71 
virtual machines running the Ubuntu 12.04 operating system.  

 

APP NSLP NTLP

 1) 1 downstream NSLP Data2) NSLP data

3) Ev_Rx_AppQuery
4) App Query 

5) Process Query

7) Store App Response

6) App Response 

8) m downstream NTLP 
Queries 

10) Increment response counter
9) MessageStatus offpath query

12) MessageStatus offpath duplicate
13) Decrement response counter

14) (m-k) NTLP 
Responses 

14) (m-k) NTLP 
Confirms 

15) (m-k) 
downstream NTLP 
Data 

16) (m-k) 
upstream NTLP 
Data 

17) NSLP data18) Process and store 
App Responses stack

 11) k NTLP Duplicate errors 

19) Add its own App 
Response to the 
Responses stack 20) NSLP data

21) 1 upstream NSLP data

 

Fig. 2 – Sequence diagram describing the interactions between the application, the NSLP, and the NTLP inside a node.  
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Fig. 3 – Testbed topology. Grey nodes indicates that a data center is co-
located with the PoP at 1 IP hop. Each PoP is realized with one router, NSIS 
enabled. 
 

Fig. 4 shows the testbed topology. The network reflects the 
PoP level topology of the Géant network [17]. The network is 
composed of 41 PoPs, represented as a single router, and 30 
datacenters. Each grey node in the figure is connected with a 
single datacenter (not shown in the figure to improve its 
readability), laying 1 IP hop away from it. Each node runs 
NSIS-ka [6], along with our off-path extension, and NetServ. 
We used the NetServ NSLP Probe/ProbeResponse messages to 
evaluate the overhead of the Query/QueryResponse signaling, 
since, basically, they use the same logic (see [7]). In fact, 
NetServ Probe message queries NetServ nodes for application 
dependent information, and the corresponding ProbeResponse 
carries back this information to the requesting client. 

We sent query messages from a group of sources to 
destinations with the same distance in terms of IP hops, and 
then we have averaged results, providing also 95% confidence 
intervals. The messages was routed through different hose, the 
radius of which ranges from 1 to 3 IP hops. We selected paths 
with lengths ranging from 4 to 9 IP hops. We measured the 
aggregated network overhead, calculated by counting the size 
of each message (Probe or ProbeResponse or Error Message) 
which crossed any topology link at the IP layer, by using the 
logging facilities provided by iptables. 
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Fig. 4 – Testbed topology. Grey nodes indicates that a datacenter is co-located 
with the PoP, at 1 IP hop distance. Each PoP is realized with one router 
running NSIS. Each datacenter is modeled by a single node, running NSIS. 

 

In this work, we do not consider the overhead associated to 
GIST gossip messages, which has a negligible impact on 
network capacity, as already shown in [9]. 

Fig. 5 shows the aggregated overhead as a function of the 
path length, with the radius of the bubbles composing the hose 
as a figure parameter. As expected, the overhead increases with 
both the path length and the bubble radius. The general 
comment is that the aggregated overhead is definitely 
negligible (below 200 KB in the worst case, i.e. a path length 
of 9 IP hops and hose radius of 3 IP hops). In addition, such an 
overhead is not only limited in absolute, but also when 
compared with size of the file to be moved. In fact, as reported 
in [10], the average size of a single genome is about 3.2 GB, 
whereas compressed VM images are in the order of 3 GB. This 
means that the total traffic due to a single signaling step is 
lower than 0.1‰ than the size of the smaller file transferred. In 
addition, since each computation last for a few hours [10], the 
impact of the associated signaling bit rate on network 
performance is negligible as well.  

It is worth underlying that by using the information on 
network and nodes status, provided by the proposed discovery 
service, the average amount of traffic to be moved within the 
network can be reduced by a factor 6, as shown in the 
simulation results presented in [10]. Thus, not only the 
overhead of the service is negligible with respect to the amount 
of traffic associated to the processing service, but also the 
relevant benefit is definitely worth its deployment 

V. CONCLUSION 
In this paper, we have presented a signaling framework for 

resource discovery of cloud resources for genomic processing 
applications. The proposed framework can be used not only to 
search datacenters able to host the processing, but also caches 
able to provide with a lower overhead the desired content. The 
specific characteristics of the proposed solution is the 
capability to provide results with a controlled proximity degree 
with respect to the data path connecting involved entities. 
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Fig. 5 – Signaling overhead over the whole network as a function of the path 
length, for different value of the hose radius. 

This aspect is particularly important to take decisions able 
to minimize the impact of genomics processing on the 
underlying network infrastructure. The results, in terms of 
network overhead, confirm that the signaling overhead is 
definitely negligible and thus affordable for any network speed.  

Clearly, even if we explicitly referred to the ARES 
frameworks, this type of signaling is suitable for all network 
scenarios in which large amounts of data have to be moved 
towards cloud sites for later processing. Thus, this solution is 
applicable also outside the genomic scenarios. 

Future work will consider a complete system description 
and deployment, including the definition of a suitable 
optimization function in the decision agent and the 
measurement of not only signaling overhead, but also network 
resource consumption during data transfer. 
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