
A Resource Discovery Framework for Cloud-based
Genomics Computing

Mauro Femminella, Gianluca Reali, Dario Valocchi
Department of Engineering

University of Perugia
Perugia, Italy

mauro.femminella@unipg.it, gianluca.reali@unipg.it,
dario.valocchi@gmail.com

Emilia Nunzi
Department of Experimental Medicine

University of Perugia
Perugia, Italy

emilia.nunzi@unipg.it

Abstract—In recent years scientific computing has evolved
into a massive usage of cloud computing, due to its flexibility in
managing computing resources. In this paper, we focus on
genomic data processing, which is rapidly gaining momentum in
research and medical activities. The main characteristics of these
data sets is that not only the number of available genome files is
becoming extremely large, but also each individual data set is
significantly large, in the order of tens of GB. Hence, a wide
diffusion of cloud-based genomic data processing will have a
significant impact on network resources, since each processing
request will require the transfer of tens of GBs into computing
nodes. To face this issue, in this paper we propose a resource
discovery framework which provides decision agents with the
needed information for selecting the most suitable computing
nodes. We have implemented this resource discovery function in
a distributed fashion, and extensively tested it in a lab testbed
consisting of about 70 nodes. We found that the overhead of the
proposed solution is negligible in comparison with the amount of
transferred data.

Keywords—cloud computing; genomics processing; distributed
framework; resource discovery protocols; off-path signaling; NSIS

I. INTRODUCTION
In recent years, the implementation of scientific computing

platforms have evolved from the use local cluster-based
computing, to the use of distributed grid computing and, more
recently, of cloud computing infrastructure [13]. This evolution
is due to the improved flexibility in managing computing
resources that this latest paradigm offers over the other ones.
However, scientific computing is very different from typical
cloud-based applications, ranging from hosting multimedia
servers to deploying storage facilities. The main differences
include the volume of data managed by scientific applications
and/or CPU requirements, which could be of some orders of
magnitude larger than in other types of applications. In
addition, scientific computing applications are highly
heterogeneous. For example, they may consist of platforms
used to storage and process the output of high energy physics
experiments, which need to be co-located with experimental
facilities in order to timely collect the huge amount of data, or
climate changes simulations, which needs high performance
computing architectures, or genomic data sets processing,

which may require more modest amounts of computing
resources for a single execution, with a highly increasing
number of executions to be implemented, with a size of the
input files easily reaching tens of GBs.

In this paper, we focus on genomic data processing, which
is rapidly gain momentum in research and medical activities,
due to the reduction in the DNA sequencing costs [1]. The
main characteristics of these data sets is that not only the
number of available genome files is becoming extremely large,
but also each data set is significantly large, in the order of tens
of GB. This problem is referred to as Big2 data problem, and its
importance increases over time. In fact, it is expected that in
the next few years all newborns will be sequenced and the
medical science will build upon genome-processing outcomes.
Clearly, it is not realistic to assume that each hospital will be
able to acquire a large computing facility (private cloud) to
cope with the internal processing demand. Thus, the use of
public cloud-based processing services will be the obvious
solution [11]. Hence, it is evident that the suitable management
of genomic data will be essential not only for storage services,
but also for their processing and their transfer. In fact, a wide
diffusion of cloud-based genomic data processing will have a
significant impact on network resources, since each processing
request will require the transfer of many GBs of data into
computing nodes in data centers of cloud providers.

In this paper we propose a discovery protocol of cloud
resources [22][29], by providing decision agents with a number
of context information. This information may consist of
position and availability of processing resources (CPU, RAM,
storage), input data to be processed, auxiliary files (e.g.
annotations [12]), and image files of the virtual machines
(VMs) hosting the genomic software packages used to process
genomics data. In fact, the types of genomic processing
(implemented through the combination of different programs,
referred to as genomic pipelines) that can be executed over a
single genome is quite large; just to have an idea, the interested
reader can find a non-exhaustive list reported in Table 1 of
[12]. Thus, it is not realistic to expect that each datacenter of a
cloud provider can simultaneously host all VMs needed for any
possible request.

Our discovery protocol leverages the functions offered by
the Next Steps in Signaling (NSIS) framework [2][3]. In more This work is supported by EU under the project ARES, accepted in the

first open call of the GN3plus project (grant EC/FP7/605243).

detail, we use the functions offered by the recently defined off-
path extension to the NSIS protocol suite, initially presented in
[8] and further refined in [9]. This solution allows
disseminating signaling over network areas of nearly arbitrary
shape. By leveraging the interception capabilities of the
signaling transport layer of NSIS, this signaling dissemination
protocol is highly efficient, and may allow finding resources
which are close to a given network path. In the considered
scenario, the path under consideration could be, for instance,
the one connecting the repository storing the needed VM
images and the data center storing the input data. Since
computing clusters in datacenters able to host VMs cannot be
on the IP path connecting two servers (only routers are located
on path), a signaling protocol with off-path discovery
capabilities is used to discover data centers with both sufficient
computing capabilities and a position suitable in order to
minimize the overall network traffic exchanged. When this
information is reported back to a decision agent, the latter can
execute an optimization algorithm for selecting a datacenter.

Our solution can be classified as a peer-to-peer (P2P)
resource discovery solution [25], with the feature that, being
based on NSIS, it is able to couple with specific network paths.
Classic P2P-based approaches [28][23] offer little or no
support to provide proximity-based solutions, as stated in [26],
trying just to limit the network overhead. Hierarchical solutions
enable the efficient discovery of the resources belonging to one
super-peer, but when more than one super-peers are involved,
the problem is not trivial. Other solutions, recently proposed,
make use of a proper ontology for service discovery
[18][19][20], without considering path proximity issues. In
[24], the authors propose an abstraction layer to discover the
most appropriate infrastructure resources, which is then used in
constraint-based approach applied to a multi-provider cloud
environment. However, proximity issues are loosely handled,
by simply referring to location requirements. Other solutions
have been specifically designed for grid computing platforms,
such as [21][27]. In [21], routing hops are considered, but they
are relevant to the grid overlay. In [27], again the effort is to
minimize the amount of message on the grid overlay, and not
to find nodes close to specific locations or paths.

We have implemented the proposed discovery solution in a
lab testbed consisting of about 70 nodes, and have executed
extensive tests. The obtained results prove that the network
overhead of the proposed solution is negligible when compared
with the size of data files to be exchanged.

The paper is organized as follows. Section II presents some
background on NSIS, and the reference scenario, which is
represented by the project ARES [10]. Section III provides
algorithmic and protocols details of our solution, and Section
IV presents the results of lab experiments. Finally, we draw our
concluding remarks in Section V.

II. BACKGROUND AND REFERENCE SCENARIO

A. Background on NSIS protocols and off-path extension
The NSIS protocol suite divides the signaling functions into

two layers [3]. The upper layer, called NSIS Signaling Layer
Protocol (NSLP), implements the application signaling logic.

The lower layer, called NSIS Transport Layer Protocol
(NTLP), delivers the NSLP messages to the next NSIS node on
path towards a given destination. The General Internet
Signaling Transport (GIST) is the IETF-defined version of the
NTLP [5]. GIST transport services make use of existing
protocols in the TCP/IP stack. GIST only delivers NSLP
messages hop-by-hop between pairs of neighboring NTLP
signaling nodes, whereas the end-to-end signaling functions, if
needed, are provided by NSLP.

Before starting a session, GIST peers have to create a
Message Association (MA) by using the information
transported in the GIST packets, such as the unique identifier
of the GIST node (Peer Identity) and one of its IP addresses.

Although IETF has standardized only two NSLP protocols
(Quality-of-Service signaling and NAT/firewall traversal),
others have been implemented , such as the NetServ NSLP [7].

NSIS has been primarily designed for managing states over
nodes lying on data paths. For this purpose, NTLP messages
may be intercepted at NSIS-capable nodes on path. In
particular, the GIST protocol allows specifying messages
routing policies through message routing methods (MRMs).
Two MRMs are currently specified in GIST RFCs: (i) Path-
Coupled MRM, which routes signaling messages through the
data path, and (ii) Loose End MRM, used for preconditioning
states in middleboxes when data destinations lie behind them.

GIST messages include a Message Routing Information
(MRI) object, which allows NSIS nodes to identify the MRM
to be used. For example, in case of a Path-Coupled MRM,
GIST packets are intercepted by NSIS nodes on-path and then
re-sent towards the destination, after being processed by the
NSLP entities.

The modular architecture of NSIS and GIST allows
extending them, also defining new MRMs, as specified in [4].
In [8][9] we have extended the signaling capabilities of NSIS
with off-path features by defining a new MRM. This extension
requires the definition of a GIST peer discovery protocol for
making each GIST node aware of its GIST peers. By using the
information collected by this protocol, we defined new delivery
strategies of signaling messages, which exploit the signaling
interception capabilities of GIST.

In this work, we use a specific off-path delivery strategy
defined in [8][9], the so-called hose mode. It consists of
delivering NSIS messages to all NSIS nodes that are at a
distance, expressed in IP hops, lower than or equal to the hose
radius from each node of the data path connecting the sender
with the signaling destination. In practice, each NSIS node on
the data path is responsible of disseminating signaling to nodes
at a distance no larger than the radius (bubble mode). Hence,
the hose consists of a sequence of adjacent bubbles. As for the
algorithm used to implement the proposed functions, in this
paper we consider the GIST discovery protocol named Leaf,
which provides stability and low overhead, whereas the
signaling dissemination is carried out with the GIST Flooding
strategy. The interested reader can find more details in [9].

B. Reference scenario: the ARES project
The reference scenario of this paper is the research project

ARES (Advanced networking for EU genomic RESearch [10]),
which aims to implement cloud-based processing facilities in
the points of presence (PoPs) of the Géant network [17]. Thus,
the ARES framework can be regarded as an application
delivery network (ADN, [14]), and the Géant network as a
cloud provider with multiple datacenters.

We assume that each PoP has a certain amount of storage
space and computational capabilities hosted in one or more
servers and managed through OpenStack [16]. In this
virtualized infrastructure, we also assume that a specific node
of the computing cluster in the PoP executes a VM that hosts
the NetServ environment [7]. This solution has the advantage
of being plug&play, since adding just a VM is straightforward
and do not require any change in the management of the
computing infrastructure. In addition, it allows deploying the
same service architecture also with different cloud
management systems, since it is necessary to adapt just a
NetServ service.

NetServ is a solution for in-network service modularization
and virtualization. The node architecture is suitable for any
type of nodes, such as routers, servers, set-top boxes, and user
equipment. Its architecture is targeted for in-network
virtualized service containers and a common execution
environment for network services. In ARES, NetServ services
are used as content caches [15], to limit the overhead of
transferring large genomic related files, and to implement
service management functions, to interact with the OpenStack
framework. NetServ caching service can be also hosted in
routers (an effort to port NetServ into Juniper routers is
currently in progress). The control plane of NetServ uses the
NSIS signaling to coordinate service execution and to hot
deploy service modules in surrounding NetServ nodes.

III. DISCOVERY FRAMEWORK
The proposed discovery framework is based on the off-path

extension of NSIS, and specifically of GIST. In more detail, we
designed an NSLP with at least one type of message, named
Query, and the related answer (QueryResponse). It is used to
collect binary information (true or false) on the status of the
recipients, which are all the NSIS enabled nodes in the hose
surrounding the IP paths between the sender and the
destination. Clearly, this behavior can be extended to enable
more sophisticated types of queries. The structure of these
messages is schematized in Fig. 1. The payload of the
QueryResponse is returned to the local application that
triggered the signaling.

Query = NSLP-header
 [Application-requirement list]
 [Content-Id list]

QueryResponse = NSLP-header
 ResponseWrapper stack

ResponseWrapper = common-header
 Node-Id
 Depth
 Response code

Fig. 1 – NSLP packets format.

From Fig. 1, it is clear that this type of Query can be used
for searching both nodes storing a desired content (caches or
original repositories), and datacenters suitable for executing
computations, thus satisfying specific, minimum requirements.

Fig. 2 shows the inter process communication between the
involved framework entities of a forwarder node, when it
receives an Query message, routed through an hose by GIST.
The involved entities are the NTLP (GIST), the newly
designed NSLP, and the application managing the data.

After the NTLP handshake, described in [5], the NSLP data
are delivered to GIST, which provides to send them to the
NSLP. The NSLP identifies the message type, extracts the
application payload and passes it to the Application instance
(steps 1-4 in Fig. 2). The Application processes the query and
returns the response code to the NSLP, which provides to store
it (steps 5-7 in Fig. 2). Meanwhile, the NTLP is in charge of
forwarding the Query message through the hose. It identifies
the next-hop destinations and starts a GIST hand-shake with
them. Each hand-shake triggers the delivery of a
MessageStatus from the NTLP to the NSLP [5]. This message
notifies the NSLP that the Query has been forwarded toward a
new destination and that a Response message is expected from
that destination. By this mean, the NSLP can maintain a
counter, which stores the number of App-Response messages
the NSLP must receive before it can forward its response
upstream (steps 8-10 in Fig. 2).

During the GIST handshake, if a next-hop destination has
received the same App-Query message from another node, it
will answer the GIST query message with a GIST off-path-
duplicate error, thus aborting the handshake [9]. This error is
reported to the NSLP using another MessageStatus, which
triggers the decrease of the response counter (steps 11-13 in
Fig. 2). If the NTLP starts m GIST hand-shakes and receives k
GIST off-path-duplicate errors, the NSLP will wait for m-k
responses before forwarding its response upstream (Fig. 2,
steps 1-16). Each time the NSLP receives an App-Response, it
adds the received stack to a local response stack and
decrements the response counter (steps 17-19 in Fig. 2). Upon
receiving the last response, which decreases the response
counter to zero (i.e., all expected responses arrived), the NSLP
adds its own ResponseWrapper to the stack and forwards the
Response message upstream (Fig. 2, steps 20-22), i.e. to the
GIST peer from which it initially received the Query.

During the responses collection, the NSLP is also in charge
of maintaining the Depth field of each ResponseWrapper
object it receives, depicted in Fig. 1. This object, along with the
Node-Id object and the RespondeCode, allows the signaling
initiator to compute a data structure which contains both the
application information and the hose topology. During the
steps 7 in Fig. 2, the NSLP initializes its ResponseWrapper
with data provided by the local Application (step 6 in Fig. 2),
its own Node-Id, and a Depth field containing the value 0.
During the step 19 of Fig. 2, the Depth field of all the received
wrappers is increased by 1, before adding it to the local stack.
Fig. 3 shows the stacks contained in each Response message
exchanged when a Query is sent through an hose with radius 2
from R1 to R5. The response code field is omitted for
readability. It is clear that, using this simple rule on the tree of

Fig. 3, the router R1 can infer the hose structure which is
depicted with explicit indentation. In this figure, the label DCi
indicates a datacenter (thus an off-path node), whereas a label
Rj indicates a router.

With reference to the scenario of the ARES project,
described in section II.B, we consider a quite refined search
process, consisting of three steps. The first two steps use the
hose signaling illustrated above.

In the first step, the ARES decision agent, known as GCM
(genomic CDN manager [10]), triggers a hose signaling, on the
VM repository application, towards the node storing the
genomic data sets to be processed. In addition, a further
signaling is triggered also on the repository storing the
auxiliary files, needed for pipeline computation [10], towards
both VM repository and genomics data sets storage. This first
set of hose signaling is used to identify the potential
datacenters close to any of the three involved paths, and
satisfying the minimum requirements indicated in the payload
of the Query message (see the Application-requirement list
field in Fig. 1). When the application which has sent the
signaling obtains the QueryResponse messages, it forwards it
to the GCM, which can thus know all the identities of the
datacenters able to support the requested processing.

The further step is to trigger, always from the GCM to the
same nodes of the previous step, additional hose signaling to
identify the potential locations (original repository or caches)
where cacheable contents (VM image files or auxiliary files)
could be stored. In this case, the searched content is carried in

the Content-Id list field of the Query message (see again Fig.
1). Again, when the application which has sent the signaling
obtains the QueryResponse messages, it forwards it to the
GCM, which can thus know all the locations where the data
needed for the computation reside.

In the third step, the GCM communicates the identities of
the nodes storing data to each datacenter controller (local
OpenStack interface bundle, LOIB, in the ARES architecture,
see [10]), which will measure the distance (in terms of IP hops
or network latency) from each data location. Note that in most
of cases this measure is already present in the node at the GIST
layer, since it is collected during the initial gossip discovery
phase of the GIST protocol itself (see section III.A of [9] for
details). Thus, the application bundle (LOIB) will simply use a
GIST API to locally retrieve this information. Then, the LOIB
selects, for each type of data (genomics data set, auxiliary files,
VM image files) the location at the lowest distance, and returns
it to the GCM. When the GCM has retrieved all the response, it
has a quite complete picture of the network, including
computing resources, network distance, and content
availability, and it can run an optimization function to select
the datacenter for executing the needed processing.

IV. PERFORMANCE EVALUATION
In this section, we present the overhead of a single hose

Query, measured on a topology of 71 real nodes. We used 71
virtual machines running the Ubuntu 12.04 operating system.

APP NSLP NTLP

 1) 1 downstream NSLP Data2) NSLP data

3) Ev_Rx_AppQuery
4) App Query

5) Process Query

7) Store App Response

6) App Response

8) m downstream NTLP
Queries

10) Increment response counter
9) MessageStatus offpath query

12) MessageStatus offpath duplicate
13) Decrement response counter

14) (m-k) NTLP
Responses

14) (m-k) NTLP
Confirms

15) (m-k)
downstream NTLP
Data

16) (m-k)
upstream NTLP
Data

17) NSLP data18) Process and store
App Responses stack

 11) k NTLP Duplicate errors

19) Add its own App
Response to the
Responses stack 20) NSLP data

21) 1 upstream NSLP data

Fig. 2 – Sequence diagram describing the interactions between the application, the NSLP, and the NTLP inside a node.

|-----DC1 1
|-----R2 1

|-----DC2 2
|-----R3 2

|-----DC3 3
|-----R4 2

|-----DC4 3
|-----R5 3

|-----DC5 4

R1R1

R5R5

DC1DC1

DC2DC2

DC4DC4

DC5DC5

R2R2

R3R3R4R4 DC3DC3

DC5 0

R5 0
DC5 1

DC4 0 DC3 0

DC2 0

DC1 0

R3 0
DC3 1

R4 0
DC4 1
R5 1
DC5 2

R2 0
DC2 1
R3 1
DC3 2
R4 1
DC4 2
R5 2
DC5 3

Fig. 3 – Testbed topology. Grey nodes indicates that a data center is co-
located with the PoP at 1 IP hop. Each PoP is realized with one router, NSIS
enabled.

Fig. 4 shows the testbed topology. The network reflects the
PoP level topology of the Géant network [17]. The network is
composed of 41 PoPs, represented as a single router, and 30
datacenters. Each grey node in the figure is connected with a
single datacenter (not shown in the figure to improve its
readability), laying 1 IP hop away from it. Each node runs
NSIS-ka [6], along with our off-path extension, and NetServ.
We used the NetServ NSLP Probe/ProbeResponse messages to
evaluate the overhead of the Query/QueryResponse signaling,
since, basically, they use the same logic (see [7]). In fact,
NetServ Probe message queries NetServ nodes for application
dependent information, and the corresponding ProbeResponse
carries back this information to the requesting client.

We sent query messages from a group of sources to
destinations with the same distance in terms of IP hops, and
then we have averaged results, providing also 95% confidence
intervals. The messages was routed through different hose, the
radius of which ranges from 1 to 3 IP hops. We selected paths
with lengths ranging from 4 to 9 IP hops. We measured the
aggregated network overhead, calculated by counting the size
of each message (Probe or ProbeResponse or Error Message)
which crossed any topology link at the IP layer, by using the
logging facilities provided by iptables.

DE1DE1

DKDK

NLNL PLPL

CZCZ

CYCY

ILIL

CHCH

LULU

TRTR

DE2DE2

BEBEUKUK

ISIS

IEIE

FR1FR1

PTPT

ESES

FR2FR2 ITIT

ATAT

MTMT

GRGR

SISI HRHR HUHU

SKSK

BYBY

UAUA

LTLTLVLVEEEE

NONO SESE FIFI

BGBG

MKMK

MEME

RSRS

RORO

MDMD

Fig. 4 – Testbed topology. Grey nodes indicates that a datacenter is co-located
with the PoP, at 1 IP hop distance. Each PoP is realized with one router
running NSIS. Each datacenter is modeled by a single node, running NSIS.

In this work, we do not consider the overhead associated to
GIST gossip messages, which has a negligible impact on
network capacity, as already shown in [9].

Fig. 5 shows the aggregated overhead as a function of the
path length, with the radius of the bubbles composing the hose
as a figure parameter. As expected, the overhead increases with
both the path length and the bubble radius. The general
comment is that the aggregated overhead is definitely
negligible (below 200 KB in the worst case, i.e. a path length
of 9 IP hops and hose radius of 3 IP hops). In addition, such an
overhead is not only limited in absolute, but also when
compared with size of the file to be moved. In fact, as reported
in [10], the average size of a single genome is about 3.2 GB,
whereas compressed VM images are in the order of 3 GB. This
means that the total traffic due to a single signaling step is
lower than 0.1‰ than the size of the smaller file transferred. In
addition, since each computation last for a few hours [10], the
impact of the associated signaling bit rate on network
performance is negligible as well.

It is worth underlying that by using the information on
network and nodes status, provided by the proposed discovery
service, the average amount of traffic to be moved within the
network can be reduced by a factor 6, as shown in the
simulation results presented in [10]. Thus, not only the
overhead of the service is negligible with respect to the amount
of traffic associated to the processing service, but also the
relevant benefit is definitely worth its deployment

V. CONCLUSION
In this paper, we have presented a signaling framework for

resource discovery of cloud resources for genomic processing
applications. The proposed framework can be used not only to
search datacenters able to host the processing, but also caches
able to provide with a lower overhead the desired content. The
specific characteristics of the proposed solution is the
capability to provide results with a controlled proximity degree
with respect to the data path connecting involved entities.

3 4 5 6 7 8 9 10
20

40

60

80

100

120

140

160

180

200

220

Path length [IP hops]

A
gg

re
ga

te
d

si
gn

al
in

g
ov

er
he

ad
 [

K
B

]

Hose radius 1 IP hop
Hose radius 2 IP hops
Hose radius 3 IP hops

Fig. 5 – Signaling overhead over the whole network as a function of the path
length, for different value of the hose radius.

This aspect is particularly important to take decisions able
to minimize the impact of genomics processing on the
underlying network infrastructure. The results, in terms of
network overhead, confirm that the signaling overhead is
definitely negligible and thus affordable for any network speed.

Clearly, even if we explicitly referred to the ARES
frameworks, this type of signaling is suitable for all network
scenarios in which large amounts of data have to be moved
towards cloud sites for later processing. Thus, this solution is
applicable also outside the genomic scenarios.

Future work will consider a complete system description
and deployment, including the definition of a suitable
optimization function in the decision agent and the
measurement of not only signaling overhead, but also network
resource consumption during data transfer.

REFERENCES
[1] Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI

Genome Sequencing Program (GSP) Available at:
www.genome.gov/sequencingcosts. Accessed on December 11, 2013.

[2] R. Hancock, G. Karagiannis, J. Loughney and S. Van den Bosch, “Next
Steps in Signaling (NSIS): Framework” IETF, RFC 4080, June 2005.

[3] X. Fu et al., “NSIS: a new extensible IP signaling protocol suite”, IEEE
Communications Magazine, 43(10), 2005, pp. 133- 141.

[4] J. Manner et al., “Using and Extending the NSIS Protocol Family”,
IETF, RFC 5978, October 2010.

[5] H. Schulzrinne, R. Hancock, “GIST: General Internet Signalling
Transport”, IETF RFC 5971, October 2010.

[6] NSIS-ka, open source NSIS implementation by Kalsruhe University,
available at: https://projekte.tm.uka.de/trac/NSIS/wiki/.

[7] M. Femminella, R. Francescangeli, G. Reali, J.W. Lee, H. Schulzrinne,
“An Enabling Platform for Autonomic Management of the Future
Internet”, IEEE Network, Nov./Dic. 2011, pp. 24-32.

[8] M. Femminella, R. Francescangeli, G. Reali, H. Schulzrinne, "Gossip-
based signaling dissemination extension for next steps in signaling,”
IEEE/IFIP Network Operations and Management Symposium (NOMS
2012), April 2012, Maui, HW, USA.

[9] M. Femminella, R. Francescangeli, G. Reali, H. Schulzrinne, D.
Valocchi, "Off-path Signaling Extension for General Internet Signaling

Transport Protocol", submitted for journal publication. Available at
http://arxiv.org/abs/1406.7650.

[10] Mauro Femminella, Emilia Nunzi, Gianluca Reali, Dario Valocchi,
"Networking issues related to delivering and processing genomic big
data", International Journal of Parallel, Emergent and Distributed
Systems, 2014, DOI: 10.1080/17445760.2014.929685

[11] A. O’Driscoll a, J. Daugelaite, R. D. Sleator, “‘Big data’, Hadoop and
cloud computing in genomics”, Journal of Biomedical Informatics, vol.
46, 2013, pp. 774–781.

[12] M. Yandell and D. Ence, “A beginner’s guide to eukaryoticgenome
annotation”, Nature Reviews Genetics, vol. 13, May 2012.

[13] Eric E. Schadt, Michael D. Linderman, Jon Sorenson, Lawrence Lee,
Garry P. Nolan, "Computational solutions to large-scale data
management and analysis", Nature Reviews Genetics, vol. 11,
September 2010.

[14] P. Romano, F. Quaglia, "Design and Evaluation of a Parallel Invocation
Protocol for Transactional Applications over the Web", IEEE
Transactions on Computers, 63(2), 2014, pp. 317-334.

[15] Femminella M., Reali G., D. Valocchi, Francescangeli R., Schulzrinne
H, "Advanced caching for distributing sensor data through
programmable nodes", IEEE LANMAN 2013, Bruxelles, Belgium,
2013.

[16] OpenStack, http://www.openstack.org/, accessed on 30 April 2014.
[17] The GÉANT pan-European research and education network. Available

at http://www.geant.net
[18] Satyen Abrol, Latifur Khan and Bhavani Thuraisingham, "An Ontology-

based System for Cloud Service", Collaboratecom 2012, October 14–17,
2012 Pittsburgh, United States.

[19] Taekgyeong Han, Kwang Mong Sim, "An Ontology-enhanced Cloud
Service Discovery System", Proc. of International MultiConference of
Engineers and Computer Scientists (IMECS 2010), March 17-19, 2010,
Hong Kong.

[20] Jaeyong Kang, Kwang Mong Sim, "Towards Agents and Ontology for
Cloud Service Discovery", International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC 2011),
October 2011, Beijing, China.

[21] Rajiv Ranjan, Lipo Chan, Aaron Harwood, Rajkumar Buyya, Shanika
Karunasekera, "Decentralised Resource Discovery Service for Large
Scale Federated Grids", E-SCIENCE '07, Bangalore, India, December
2007.

[22] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De
Rose, Rajkumar Buyya1, "CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms", Softw. Pract. Exper. 2011; 41:23–50.

[23] Wu-Chun Chung, Chin-Jung Hsu, Kuan-Chou Lai, Kuan-Ching Li,
Yeh-Ching Chung, "Direction-Aware Resource Discovery Service in
Large-Scale Grid and Cloud Computing", IEEE International
Conference on Service-Oriented Computing and Applications (SOCA
2011), December 2011, Irvine, United States.

[24] Wright et al., "A constraints-based resource discovery model for multi-
provider cloud environments", Journal of Cloud Computing: Advances,
Systems and Applications 2012, 1:6.

[25] Ranjan R., Harwood A., Buyya R., "Peer-to-peer-based resource
discovery in global grids: a tutorial", IEEE Communications Surveys &
Tutorials, vol. 10, No. 2, 2008.

[26] Gregor Pipan, "Use of the TRIPOD overlay network for resource
discovery", Future Generation Computer Systems, Vol. 26, No. 8,
October 2010, Pages 1257–1270.

[27] Leyli Mohammad Khanlia, Saeed Kargarb, "FRDT: Footprint Resource
Discovery Tree for grids", Future Generation Computer Systems, Vol.
27, No. 2, February 2011, Pages 148–156.

[28] Guan Le, Ke Xu, Junde Song ,"Gossip-based Hybrid Multi-attribute
Overlay for Resource Discovery in Federated Clouds", Ninth IEEE
International Conference on e-Business Engineering (ICEBE 2012).

[29] Alhamazani K., Mitra K., Lizhe Wang, Rabhi F., Ranjan R., "Cloud
monitoring for optimizing the QoS of hosted applications", IEEE 4th
International Conference on Cloud Computing Technology and Science
(CloudCom), 2012, pp. 765-770, 2012.

