

SDN Testbed Experiences: Challenges and Next Steps

SDN Concertation Workshop January 30th, 2014

Daniel King – <u>d.king@lancaster.ac.uk</u> Panagiotis Georgopoulos – <u>p.georgopoulos@lancaster.ac.uk</u> Nicholas Race – <u>n.race@lancaster.ac.uk</u>

SDN Experimentation Experience **VoD** Use Case Scenario

- Globally, Internet video traffic was 57% of all consumer Internet traffic in 2012 will be 69% in 2017*
 - Growth in Video-on-Demand and Internet video to TV services
- This growth challenges the underlying infrastructure, requiring mechanisms to:
 - Reduce the number of naïve duplicate requests for identical content
 - Prevent these requests from consuming network resources
- Designed and implemented an OpenFlow-assisted VoD service that delivers content locally based on transparent caching
- Uses OpenFlow to dynamically rewrite requests and forward them to a local copy of the content :
 - Increases distribution efficiency
 - Saves network resources (improves network utilisation)
 - Improves user Quality-of-Experience
- Deployed onto a pan-European OpenFlow testbed (OFELIA)
- Demonstrated the efficiency of our service and the capability of OpenFlow to achieve the required functionality

Global consumer Internet traffic in PB/ month*

SDN Testbeds VoD Experimentation across Europe

- Sep 2010 Sep 2013 : 3 years, 17 Partners. First OpenFlow Testbed across Europe (10 federated islands). Joined on 2nd Open Call : VoD use case
- Developed a transparent, OpenFlow-assisted, in-network caching service that aims to cache video assets as close to the end-user as possible.

GN3plus : Apr 2013 – Mar 2015 : 2 years, 41+ Partners. GN3Plus : Extend/expand GEANT's network across EU

FED4FIRE

- Oct 2012 Nov 2016 : 4 years, 17+ partners
- Provide a common federation framework for Future Internet Research and Experimentation facilities.

GN3plus & FED4FIRE VoD Orchestration & Delivery Goals

- Automated service setup and content distribution
- Resource control and allocation dynamically and on-demand over multitechnology testbeds
- Support multiple caches running across different islands with load balancing
- Support multiple video quality levels of the same content (using adaptive bitrate streaming MPEG-DASH)
- Monitor network conditions : support caching based on network awareness (e.g. pre-cache popular content overnight)
- CDNi interface to allow services to interact with CDNs

ANCASTE

SDN Testbed Research VoD Application Delivery

- There is a growing need for SDN-based Service Orchestration, both for research but also industry.
- Drive SDN infrastructure from the Client (interface) and Application requirements, and respond to real-time requests and scheduled services.
 - Allowing a variety of applications for office automation, data backup and retrieval, distributed computing, and high-quality media broadcasting across SDN infrastructure.
- The SDN infrastructure does not need to be seen any longer as a composition of individual elements:
 - Applications need to be capable of interaction with the network.
 - Support of the next generation of variable and dynamic transport characteristics.
 - Automated deployment and operation of VoD services.
 - "Create a new transport connection between VoD caching sites."
 - "Respond to how many users have requested specific VoD content."
 - "Schedule these VoD services."
 - "Automatically select the peering point between CDNs based on demand/day/week."
 - "Increase link capacity after exceeding VoD bandwidth thresholds."
 - "Reoptimize my CDN network after restoration switching."

SDN Testbed Research SDN Controller for Network Operations

- "SDN Controller" is a contentious term, it can have many different meanings:
 - Historically the term was derived from the network domain, technology and protocol mechanism.
- SDN Controller wars are ongoing:
 - Operators have an expectation of standards-based technologies for deploying and operating networks.
 - SDN controller vendors rarely provide multivendor interoperability using open standards.
 - Provisioning should be a compelling feature of SDN, however many SDN controllers use non-standardised APIs.
 - Recent Open Source initiatives are vendor led.
- Typically SDN controllers have a very limited view of topology, multi-layer and multidomain is not supported.
- Flexibility has been notably absent from most controller architectures both in terms of southbound protocol support and northbound application requests.

SDN Testbed Research Network Operation Framework

- Avoiding the mistake of a single "controller" architecture.
 - As it encourages the expansion and use of specific protocols.
- Discovery of network resources and topology management.
- Network resource abstraction, and presentation.
- Routing and path computation.
- Multi-layer coordination and interworking
 - Multi-domain & multi-vendor network resources provisioning through different control mechanisms (e.g., OpenFlow, ForCES).
- Policy Control.
- OAM and performance monitoring.
- A wide variety of southbound and northbound protocol support.
- Leveraging existing technologies.
 - What is currently available?
 - Must integrate with existing and developing standards.

ABNO A PCE-enabled Network Controller

- Application-Based Network Operation (ABNO) framework.
 - "A PCE-based Architecture for Application-based Network Operations"
 <u>draft-farrkingel-pce-abno-architecture-00</u>
- PCE provides a set of tools for deterministic path computation
 - Prior to PCE network operators might use complex planning tools to compute paths and predict network behavior

- PCE reduces the onerous network operation process of coordinating planning, computation, signaling and placement of path-based services
- PCE has evolved:
 - Computes single and dependant LSPs in a stateless manner
 - Concurrent optimization of sets of LSPs
 - Performing P2P and P2MP path computation
 - Hierarchical PCE Architecture
 - Stateful computation and monitoring of LSPs
 - The *state* in "stateful" is an LSP-DB
 - Stored information about some or all LSPs in the network
 - Active PCE, resize or recomputed based on BW or network triggers
 - PCE-initiated LSP setup
 - Delegate LSP control to the PCE
 - Recommend rerouting of LSPs

SDN Testbed Research ABNO Functional Components

- "Standardized" components and co-operation.
- Policy Management
- Network Topology
 - LSP-DB
 - TED
 - Inventory Management
- Path Computation and Traffic Engineering
 - PCE, PCC
 - Stateful & Stateless
 - Online & Offline
 - P2P, P2MP, MP2MP
- Multi-layer Coordination
 - Virtual Network Topology Manager
- Network Signaling & Programming
 - RSVP-TE
 - ForCES and OpenFlow
 - Interface to the Routing System (I2RS)

SDN Testbed Research ABNO Process Simple Example

- 1. OSS requests for a path between two L3 nodes.
- 2. ABNO controller verifies OSS user rights using the Policy Manager.
- 3. ABNO controller requests to L3-PCE (active) for a path between both locations.
- 4. As L3-PCE finds a path, it configures L3 nodes using Provisioning Manager.
- 5. Provisioning manager configures L3 nodes using the required interface (RSVP-TE, OpenFlow, etc.).
- 6. OSS is notified that the connection has been set-up.

SDN Testbed Research ABNO Use Cases

• Current Uses Cases highlighted in the Internet-Draft

3. ABNO Use Cases	22
3.1 Inter-AS Connectivity	22
3.2 Multi-Layer Networking	28
3.2.1 Data Center (DC) Interconnection across MLNs	<u>31</u>
3.3 Make-Before-Break	35
3.3.1 Make-Before-Break for Re-optimization	<u>35</u>
3.3.2 Make-Before-Break for Restoration	<u>36</u>
3.3.3 Make-Before-Break for Path Test and Selection	<u>37</u>
3.4 Global Concurrent Optimization	<u>39</u>
3.4.1 Use Case: GCO with MPLS LSPs	40
3.5 Adaptive Network Management (ANM)	42
<u>3.5.1</u> . ANM Trigger	<u>43</u>
3.5.2. Processing request and GCO computation	<u>43</u>
<u>3.5.3</u> . Automated Provisioning Process	<u>44</u>
3.6 Pseudowire Operations and Management	<u>45</u>
<u>3.6.1</u> Multi-Segment Pseudowires	45
3.6.2 Path-Diverse Pseudowires	<u>47</u>
<u>3.6.3</u> Path-Diverse Multi-Segment Pseudowires	<u>48</u>
3.6.4 Pseudowire Segment Protection	<u>49</u>
<u>3.6.5</u> Applicability of ABNO to Pseudowires	<u>49</u>
3.7 Cross-Stratum Optimization	50
3.7.1. Data Center Network Operation	<u>50</u>
3.7.2. Application of the ABNO Architecture	<u>52</u>
3.8 Other Potential Use Cases	54
<u>3.8.1</u> Grooming and Regrooming	<u>54</u>
<u>3.8.2</u> Bandwidth Scheduling	<u>54</u>
<u>3.8.3</u> ALTO Server	55

Thank you!

Questions?

Daniel King – <u>d.king@lancaster.ac.uk</u> Panagiotis Georgopoulos – <u>p.georgopoulos@lancaster.ac.uk</u> Nicholas Race – <u>n.race@lancaster.ac.uk</u>

Backup Slides

- Network Abstraction & Virtualization
- ABNO Multi-layer Example

SDN Testbed Research ABNO Process Multi-layer Example

- OSS initiates a request for multi-layer reoptimization after restoration.
- The ABNO controller checks applicable policies and inspects LSP-DB. Obtains relationship between virtual links and forwarding adjacencies and transport paths.

ANCASTER

UNIVERSIT

- The ABNO controller decides which L3 paths are subject to re-routing and the corresponding L0 paths.
- The ABNO controller requests new paths to the L3 PCE, using GCO and passing the currently used resources
- L3 PCE finds L3 paths, requesting the VNTM for Virtual Links. Virtual Links may need to be resolved via L0 PCE.
 - The responses are passed to the ABNO controller
 - The ABNO controller requests the VNTM to provision the set of paths, avoiding double booking of resources
- The VNTM proceeds to identify the sequence of rerouting operations for minimum disruption and requests the provisioning manager to perform the corresponding re-routing.
- Provisioning Manager sends the required GMPLS requests to the LO network nodes.
- OSS is notified that the re-optimization is complete.