

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Deliverable D13.1 (DJ2.1.1)

Contractual Date: 30-11-2014

Actual Date: 02-03-2015

Grant Agreement No.: 605243

Activity: JRA2

Task Item: T1

Nature of Deliverable: R (Report)

Dissemination Level: PU (Public)

Lead Partner: PSNC

Document Code: GN3PLUS-14-1233-26

Authors: Christos Argyropoulos (GRNET/ICCS), Buelent Arslan (FAU), Jose Aznar (i2CAT), Kurt Baumann

(SWITCH), Krzysztof Dombek (PSNC), Eduard Escalona (i2CAT), Dani Guija (i2CAT), Eduardo Jacob

(EHU), Artur Juszczyk (PSNC), Jiri Melnikov (CESNET), Alaitz Mendiola (EHU), Susanne Naegele-Jackson

(FAU), Łukasz Ogrodowczyk (PSNC), Dušan Pajin (AMRES), Damian Parniewicz (PSNC), Ronald van der

Pol (SURFnet), Milosz Przywecki (PSNC)

© GEANT Limited on behalf of on behalf of the GN3plus project.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007–

2013) under Grant Agreement No. 605243 (GN3plus).

Abstract

This document reports on activities carried out in JRA2 T1 to support advanced applications utilising OpenFlow/SDN. An update from the

support of SA2-operated GÉANT OpenFlow Facility is provided and issues related to SDN cloud support, multi-domain SDN, SDN

monitoring, SDN security and SDN applications are discussed. Description of proof-of-concept of solutions for security applications,

monitoring, multi-domain, circuit-oriented SDN and SDNaps are provided.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support Utilising
OpenFlow/SDN
Document Code: GN3PLUS-14-1233-26

Table of Contents

Executive Summary iv

1 Introduction 5

2 Support of SA2-Operated GOFF 6

2.1 GOFF Data-plane Monitoring 6

2.1.1 Operation Levels 6

2.1.2 Network Monitoring 8

3 OpenFlow Traffic Security Redirection Solutions 10

3.1 Redirect Scenarios 10

3.1.1 Traffic Duplication and Redirection 11

3.1.2 Redirection of the Complete Traffic Flow 17

3.2 Conclusion 21

4 Monitoring 23

4.1 Introduction to Monitoring in OpenFlow and SDN Environments 23

4.2 Flow-based Monitoring in OpenFlow Environments 23

4.2.1 Monitoring with sFlow 23

4.2.2 sFlow vs. NetFlow/IPFIX Monitoring in SDN 25

4.3 Flow Monitoring in OpenFlow Environment Using NetFlow/IPFIX 25

4.3.1 Introduction 25

4.3.2 History of NetFlow 26

4.3.3 OpenFlow Capabilities Regarding Flow Monitoring 26

4.3.4 Scenario for Flow Monitoring of the OpenFlow Network

Using NetFlow/IPFIX 28

4.3.5 OF2NF Application Concept 30

4.3.6 Export of Flow Statistics from OpenFlow Controller Over NetFlow/IPFIX 32

4.3.7 Prototypes of OF2NF for Ryu Controller 34

5 Conclusions 35

Appendix A Survey on clouds, SDN and NFV 36

Appendix B Overview of Business Solutions for SDN Monitoring 41

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support Utilising
OpenFlow/SDN
Document Code: GN3PLUS-14-1233-26

Appendix C OpenFlow Vendor Overview: Optional OpenFlow features and Features for

Monitoring and Statistics 42

Appendix D SDN for Clouds, Testbeds and Campus Networks 50

D.1 What can the network do for clouds? 50

D.2 Multi-domain SDN Technologies for Cloud Computing and Distributed Testbeds 51

D.2.1 Slice-oriented vs Connection-Oriented Multi-Domain SDN 51

D.2.2 Use Cases 52

D.2.3 Connection-Oriented Multi-Domain SDN 63

D.2.4 Multi-Domain Slice-Oriented Approach 67

Appendix E SDNapps 75

E.1 Changing the Rules and Perspective 75

E.2 Most Relevant SDN Controller Proposed Frameworks 75

E.3 SDNapps Concept Statement 76

E.3.1 SDNapps Definition 76

E.3.2 Overcoming Barriers of Current Solutions: SDNapps Motivation 77

E.3.3 SDNapps Framework 78

E.3.4 Challenges While Applying SDNapps 79

E.4 SDNapps Key Benefits – Who can benefit from SDNapps? 79

E.5 SDNapps Success Use Cases 80

E.5.1 SDNapps Commercial Use Cases 81

E.6 SDNapps Implementation 81

E.6.1 QoS SDNapp Proof-of-Concept: Pathfinder Implementation 82

E.6.2 Pathfinder Real-time Topology Abstraction 83

E.6.3 Path Computation 84

E.6.4 Path Application 84

E.6.5 Implementation Roadmap 85

E.7 SDNapps and NFV 86

E.8 Conclusions 87

References 88

Glossary 94

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

iv

Executive Summary

Software-Defined Networking has recently experienced a huge interest in the networking industry and academia.

Network programmability creates new possibilities for the provisioning of new, advanced network services. This

document summarises results of GN3plus Joint Research Activity 2, Task 1 (JRA2T1). JRA2 T1 focused on

investigation of how new SDN capabilities can support requirements of the specialised applications. The work

was focused on:

 Multi-domain SDN

 Monitoring in OpenFlow networks

 Using OpenFlow to enhance security in the network

 Support for clouds

 SDN applications.

The sections of this document describe the results in each of the above-mentioned areas.

Section 2 reports on support of the SA2-operated GÉANT OpenFlow Facility (GOFF). It lists the problems

discussed in collaboration with SA2. A separate section is related to enhancing the GOFF with the monitoring

slice, which is used to support the operation of the facility and to detect failures. Responsibilities of GÉANT NOC,

SA2/JRA2 GOFF provider and experimenter are listed.

Section 3 proposes the use of OpenFlow to enhance the security in the network. Two scenarios are described:

traffic duplication and redirection, which can be used for the traffic analysis and redirection of the complete traffic

flow, which can be used to filter the traffic. For both scenarios, a detailed description is provided and a proposal

for the implementation is given.

Section 4 provides an overview of the monitoring capabilities of the SDN/OpenFlow. It begins with a short

description of the flow-based monitoring capabilities. Then it continues with a proposal for a complete solution

for generating NetFlow data, based on the OpenFlow statistics. An overview of Business solutions for SDN

monitoring is also given, to provide a broader view on monitoring possibilities in SDN. Finally, the monitoring

capabilities of the selected OpenFlow switches are described, and OAM/OVS extensions implemented as part of

the discussion of JRA2T1 work.

There are also a number of appendices providing supplementary information:

 Appendix A details the results of an NREN and user community survey on clouds, SDN and NFV, based

on the question: What can the network do for the clouds?

 Appendix B provides an overview of business solutions for SDN monitoring.

 Appendix C discusses the optional OpenFlow features, as well as features for monitoring and statistics

available from vendors.

 Appendix D introduces SDN for clouds, testbeds and campus networks, discusses solutions for multi-

domain SDN and provides a description of three use cases.

 Appendix E describes SDNapps as generic network functionalities running on top of the SDN/OpenFlow

network, as well as discusses the relationship between SDNapps and NFV.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

5

1 Introduction

Software-Defined Networking (SDN) and OpenFlow are both relatively new, but are rapidly becoming more

widespread as they mature. A large number of conference papers and presentations related to SDN and

OpenFlow show that academic and research communities are especially interested in exploring possibilities of

using OpenFlow as a technology to allow control of the network at the flow level. At the same time, SDN solutions

development also greatly influence the development of other technologies such as Network Functions

Virtualization (NFV). NFV is another emerging technology, heavily supported by the network operators, that

allows virtualisation of network functions into reusable modules. A number of efforts are focused on the

standardisation of SDN and NFV. The Open Networking Foundation [ONF] is developing OpenFlow standards,

and SDN is also being defined by Software-Defined Networking Research Group (SDNRG) at IRTF [SDNRG],

as well as by ITU-T (see recommendation Y.3300: Framework of software-defined networking [Y3300]). Network

Functions Virtualisation is being defined by ETSI [ETSINFV], and at the time of writing this document (October

2014), there are already eight standards related to the NFV framework, use cases, interfaces, security and

available proof of concepts.

Simultaneously, a number of SDN tools have been developed: the most important from the JRA2T1 point of view

are SDN controllers and virtualisation tools (e.g. FlowVisor [FV], flowspace firewall [FSFW], OpenVirteX [OVX]).

After short analysis of the features and capabilities of the controllers (which is not covered in this document) the

JRA2T1 team selected two controllers for building proof-of-concept prototypes: Python-based Ryu [RYU] and

Java-based OpenDaylight [ODL]. Both controllers support the most recent OpenFlow protocol versions. Ryu is a

controller initially developed by NTT, while OpenDaylight is a collaborative project supported by the Linux

Foundation [LINF].

The work within JRA2T1 has focused on a number of different topics, the results of which are discussed in the

following sections. After the handover of the GÉANT OpenFlow Facility (GOFF) to SA2, JRA2T1 members

provided the necessary support to the SA2 team. The different requirements from Open Call projects also resulted

in a number of questions related to the potential enhancement of the GOFF capabilities. JRA2T1 contributed to

necessary analysis of the requirements and, where possible, proposed solutions to enhance the functionality of

GOFF.

Apart from supporting the GOFF, the JRA2T1 team investigated a number of issues related to using

SDN/OpenFlow to support flow-based networking. Since SDN technologies are relatively new, there are areas

that are not covered by standards (e.g. multi-domain SDN) or that need further investigation, such as the

possibilities of supporting existing services and tools with the new capabilities offered by SDN networks. In

particular, cloud-related requirements in GÉANT and the NREN environment have been assessed, and multi-

domain SDN possibilities, both for the provisioning of circuits across multiple OpenFlow domains as well as for

the creation of multi-domain SDN slices, have been analysed. The OpenFlow capabilities for strengthening the

security in the network through traffic redirection and duplication using OpenFlow have also been investigated.

The OpenFlow monitoring capabilities have also been reviewed, and a proposal for creating NetFlow data based

on OpenFlow flow statistics has been developed. The shortcomings of OAM capabilities of the Open vSwitch

have been analysed, and a solution has been proposed.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

6

2 Support of SA2-Operated GOFF

JRA2 Task 1 has acted as the Subject Matter Expert (SME) for the GÉANT OpenFlow Facility (GOFF), consulting

SA2 Task 3 for advanced architectural and operational issues.

A representative list of operations and technical issues that were handled by JRA2 Task 1 include:

 The introduction of multi-kernel support for GOFF XEN-based virtual machines (VM).

 Work-around solutions for Open vSwitch bugs and insufficiencies (e.g. OpenFlow port assignment).

 Investigation of FlowVisor failures and troubleshooting (e.g. XML-configuration crash, Java machine

memory management, connection problems with OCF management plane, cleaning system logs).

 Resource management (memory consumption, CPU, HDD).

 Log files management.

 Management plane connectivity problems troubleshooting (OXAD crashes).

 Firewalling inconsistencies troubleshooting.

 Direct OpenFlow rule injection to Open vSwitches, without OpenFlow controller intervention, used for the

GOFF data-plane monitoring.

 Ethernet link/port assignment to Open vSwitches.

 Investigation of FlowVisor flowspace policy implementation (e.g. OpenFlow NORMAL action, finding and

presentation of alternatives to NORMAL action).

 Solving problem with duplicated entries in Optin Manager's Experiment table (delete the duplicated

entries, train people on how to solve this problem if appear again).

 Assist on what actions can or cannot be performed on the GOFF.

 Assist on how to bypass FlowVisor by using another controller (discuss on how to configure OVSs,

discuss on how to ensure the connectivity between the controller and the OVSs).

2.1 GOFF Data-plane Monitoring

The GOFF is a testbed service currently in place for GÉANT users in heavy use by GÉANT Open Call projects.

The following section describes how the different sites of the OpenFlow facility are being monitored by the GOFF

operations team, as a result of the monitoring infrastructure slice designed and implemented by JRA2T1.

2.1.1 Operation Levels

The GÉANT OpenFlow Facility consists of three levels of operation. In each operational level, a different set of

administration groups are authorised and are able to take actions. The three levels of operations can be

considered horizontal due to the fact that each higher level uses the services provided by the underlying level in

order to serve its users.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

7

The three levels of operation (see Figure 2.1) and the corresponding responsibilities can be categorised with the

following order, starting from the most basic (lower) level:

Infrastructure Provider (GÉANT NOC)

 Cabling

 Power Supply

 Air Conditioning

 Physical Installation/Maintenance

 IPv4/IPv6 Network Connectivity (for the control and management plane)

 IPv4/IPv6 Address Space Allocation

 Domain Name System

 Perimeter Firewalling

 L2 data plane connectivity

OpenFlow Facility Provider (GN3plus SA2/JRA2)

 Operating System Administration (XEN & OVS servers)

 Open vSwitch Administration

 OpenFlow Proxy Controller (FlowVisor) Administration

 XEN Virtual Machine Administration

 G-OCF Software

 Experimenters Support

 Experimenters Registration

Experimenter

 VM actions (create, delete, start, shutdown)

 OF controller operations

 OF topology (create, edit, delete)

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

8

Figure 2.1: GÉANT OpenFlow Facility levels of Operation

2.1.2 Network Monitoring

The GÉANT network’s NOC monitors the network connectivity (i.e. the point-to-point Layer 2 MPLS VPNs -

pseudowires between Juniper MX boxes) provided by GÉANT and also the Layer 3 GÉANT services which are

used by the control and management plane of the OpenFlow Facility (i.e. IPv4/IPv6 Network Connectivity,

Firewalling).

Data plane operations and maintenance responsibilities are inevitably divided between Infrastructure Provider

(GÉANT NOC) and OpenFlow Facility provider (GN3plus SA2/JRA2). By taking a closer look in Figure 2.2, the

installation of the OpenFlow software switches (Open vSwitch - OVS) inside physical servers and their direct

network connections with the XEN hypervisors (back-to-back Ethernet cabling) act as Software Defined

Networking (SDN) components of the data plane, controlled by the OpenFlow control plane (FlowVisor proxy

controller). The data plane connectivity among the experimenters’ VMs require the concurrent normal operation

of the GÉANT Layer 2 MPLS VPNs and OpenFlow components that are used as SDN-enablers.

Taking into consideration the complex character of the data plane, an OpenFlow Facility provider (GN3plus

SA2/JRA2) decided to create a special- purpose user slice that would be used for monitoring purposes by

checking the end-to-end connectivity of the GÉANT OpenFlow Facility hypervisors among PoPs. The overall data

plane (the entire set of links) connectivity service that is provided to the users’ VMs can be easily checked by the

OpenFlow Facility provider (GN3plus SA2/JRA2) through automated scripts that use ICMP protocol-based

management tools (i.e. traceroute, ping) which trigger email alerts to the administration team in case of packet

loss on a link.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

9

 Figure 2.2: GN3plus - DANTE demarcation points for the GÉANT OpenFlow Facility defining maintenance

responsibilities

The creation of an infrastructure slice that would be capable of monitoring the full mesh, data-plane topology

among PoPs and the OpenFlow switches’ normal operation should be autonomously defined without depending

on the OpenFlow control plane components, such as FlowVisor proxy controller and OpenFlow controllers on top

of the FlowVisor. Hence, OpenFlow forwarding rules were manually injected to the OpenFlow switches in order

to implement the forwarding logic that is required for the end-to-end connectivity checks. That way, the persistent

OpenFlow rules inside the Open vSwitches are manipulating the packets used for monitoring purposes, without

requiring the participation of the OpenFlow control plane for the flow-based forwarding process. Thus, in case of

failure at the control plane, the monitoring slice remains unaffected.

A summary of the required steps for the GOFF monitoring slice creation follows.

 Creation of a new slice to the GOFF.

 Reservation of compute resources (VMs) in each PoP.

 Allocation of the appropriate flowspace (VLANs) that would be used explicitly for monitoring purposes.

 VLAN logical interfaces creation inside the VMs.

 Manual persistent flow rule injection (and manipulation) to the Open vSwitches that implement the

forwarding logic.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

10

3 OpenFlow Traffic Security Redirection
Solutions

In a typical network, critical and/or suspected network traffic is redirected to the security devices for detailed

analysis against security attacks (using Intrusion Detection and Prevention Systems) and/or to enforce some

security policies (through the use of Firewall or Web security proxy). Currently, traffic redirection is achieved using

legacy networking equipment. With the introduction of the OpenFlow protocol, new possibilities for more granular

control of traffic are emerging and it can be a very powerful tool both for traffic redirection and traffic filtering

purposes. Use of the OpenFlow-enabled networks provide new capabilities to introduce security features directly

in the network and to support and interoperate with existing solutions (e.g. by facilitating traffic analysis through

delivery of specific flows to network security appliances).

There is extensive and ongoing research in the OpenFlow community that covers these topics. This includes

CloudWatcher [CLWATCH], a framework that automatically detours network packets to be inspected by pre-

installed network security devices, SE-Floodlight [SEFLOOD], which is the implementation of an OpenFlow

security mediation service, including detection and blocking of botnets in the OpenFlow networks. Part of the

forthcoming OpenDaylight Project release also includes a system for attack detection and traffic diversion,

Defense4All, which is based purely on monitoring and control capabilities exposed by OpenDaylight

[DEFENSE4ALL].

This section provides a summary of the OpenFlow traffic security solutions investigated in JRA2T1. Full

documentation, along with code examples and testing results, can be found in Section 3.

3.1 Redirect Scenarios

Two use-case scenarios have been proposed to easily and effectively redirect specific traffic flows that need to

be analysed by the security devices:

 Duplication and redirection of the traffic – This approach is usually used for IDS security devices or

other kind of traffic analysis where legacy networking equipment uses traffic mirroring technology. This

can be also useful for traffic accounting purposes, or for external devices/software creating NetFlow

statistics.

 Redirection of the complete traffic flow – This approach is usually used for firewall devices or

transparent Web security appliances (IPS security appliances). In legacy networking, these devices need

to be located on the traffic path, or "policy-based routing" is used to redirect traffic from the regular routing

path.

Both scenarios have an arbitrary network topology from a campus or data-centre network, where a typically large

number of hosts or servers have access to resources in the local network or at the Internet. An OpenFlow-enabled

network is considered in the "converged state" where an OpenFlow controller has already configured appropriate

flow tables of OpenFlow switches.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

11

3.1.1 Traffic Duplication and Redirection

In the first scenario, an IDS security appliance is introduced into the network to provide security analysis of the

network traffic. The network administrator’s requirement is to define specific traffic flows of interest and to forward

them to the IDS appliance. We propose the concept of the “SDN Traffic Redirection Application” (SDNtrap), which

sits on top of the OpenFlow controller and will reconfigure the network to forward traffic according to the

administrator’s requirements.

Figure 3.1: Traffic duplication and redirection scenario

It is very important to note that under normal conditions, regular traffic-forwarding decisions that are preconfigured

in the network must not be changed. SDNtrap will compose and apply only additional flow rules in order to enforce

traffic duplication and redirection. In case of detection of dangerous traffic in the network by the IDS, feedback

might be given to the controller in order to change some flow rules and drop the dangerous packets.

3.1.1.1 Proposed Solution for Traffic Duplication and Redirection

The proposed solution uses features of the OpenFlow specification 1.1 [OF1.1.0] and above, specifically multiple

OpenFlow tables and optional “Apply-Actions” instruction. For the successful redirection of the traffic, the

SDNtrap application needs the following information, which has to be defined by administrator:

IDS
appliance

Web Server

Host 1

Host 2

O
u

t
tr

af
fi

c
fl

o
w

D

u
p

lic
at

ed
 a

n
d

 r
ed

ir
ec

te
d

HTTP out flow

1. Openflow switch needs to duplicate „interesting“ traffic flow
2. One flow has to be forwarded toward the IDS system
3. Another flow needs to be forwarded by the „standard“ flow
rules toward original destination

HTTP in flow
HTTP out packets

HTTP out flow

HTTP in packets

HTTP in flow

In
 t

ra
ff

ic
 f

lo
w

D
u

p
lic

at
ed

 a
n

d
 r

ed
ir

ec
te

d
HTTP out flow = TCP dst 80
HTTP in flow = TCP src 80

Scenario: HTTP packets flow (or any other service) needs
to be security checked at the network IDS appliance.
These flows needs to be duplicated and redirected to the
IDS appliance

OF switch

OF switch

OF switch

OF switch

OF switch

Openflow
Controller

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

12

 Interesting traffic – Definition of the traffic that has to be checked. It has to contain matching conditions

for traffic flows, whose duplicated copies need to be redirected to the security appliance (e.g.

source/destination addresses, ports).

 Location of the security appliance – point of attachment in the network (noting port and switch).

 Security label – network-wide MPLS label or VLAN tag that will be used for labelling interesting traffic.

The proposal for the traffic redirection uses the following concepts and features:

 Point of duplication and redirection – It is proposed that the duplication and redirection of the traffic is

performed by the OpenFlow switch closest to the source of the traffic. For each traffic flow defined as

interesting by the administrator, the SDNtrap determines the closest OpenFlow switch (ingress switch) to

the source, where the security redirection flow rules will be applied.

 Usage of multiple flow tables – The first OpenFlow Table in the pipeline processing of the OpenFlow

switch is dedicated for the security redirection. All other rules are then located in the remaining flow tables,

so they can be processed after security redirection rules.

 Matching flow rules for interesting traffic – Matching part of the OpenFlow security redirection rules

will be carried out according to the definition of the interesting traffic. This will also include an ingress port

matching.

 Actions for matched traffic – The action part of the security flow rules should duplicate and redirect

interesting traffic flow and label it for further efficient forwarding.

 Forwarding of the interesting traffic – Further forwarding of the duplicated and redirected interesting

traffic through the network should be done solely based on the security label.

3.1.1.2 Point of Duplication and Redirection

The duplication and redirection of the traffic is carried out on the OpenFlow switch that is closest to the source of

the traffic. For each traffic flow defined as interesting by the administrator, SDNtrap determines the closest

OpenFlow switch to the source, where the security redirection flow rules will be applied. In some cases,

depending on the topology, this approach will lead to increased network traffic (redundant traffic flows), because

regular and redirected traffic could follow up the same path toward its regular destination and security device.

Algorithms for the more optimal routing and the point of duplication and redirection can be found in the paper

CloudWatcher [CLWATCH] where they are analysed in more detail. In the real network-use case, it will be

important to have a separate SDN application for the routing policy decisions (which does not need to be shortest

path based, but for example user policy based) and the separate for the traffic redirection. This is related to our

objective that the SDNtrap system should not change and influence any flow rules already installed in the network.

Also, it is worth adding that the networks usually have some kind of layered or hierarchical structure, where

network devices, in this case OpenFlow switches, have different roles (e.g. access/aggregation, distribution, core,

etc.). It is also important to understand on the device upon which it is appropriate to have function of the security

redirection.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

13

Figure 3.2: Traffic duplication and redirection points in the network

For each definition of traffic flow that needs to be checked (flow matching rules), SDNtrap should identify the

source of the traffic (i.e. IP address or prefix, MAC address, etc.), the closest OpenFlow switch and its port toward

the source. The closest OpenFlow switch can be identified from the information available on an OpenFlow

controller, for example network topology information and/or already configured flow tables on OpenFlow switches.

If the interesting traffic definition does not identify specific source (for example matches all HTTP and DNS traffic),

than SDNtrap should reconfigure all OpenFlow edge switches and their edge ports (ports toward hosts or servers)

to match that traffic.

3.1.1.3 Usage of Multiple OpenFlow Tables

To be able to duplicate and redirect traffic and not to change or influence regular traffic-forwarding decisions

already in place, multiple OpenFlow tables should be used (as shown in Figure 3.3). The first OpenFlow Table

in the pipeline processing of the OpenFlow switch should be dedicated for the security redirection rules and will

have OpenFlow rules that will match interesting traffic defined by user. All other rules should be placed or moved

to other OpenFlow tables, so they can be processed after security redirection rules. In the initial state, the first

table should contain the Table-Miss action, which directs the packet to a subsequent table. Alternatively, ‘match

all’ with the lowest priority and Goto-Table instruction can be set in order to match any traffic that is not matched

as interesting from the SDNtrap point of view. Processing the packet in the first table also provides the possibility

to manage the traffic based on the original source/destination addresses (which can be altered in subsequent

tables).

Original traffic

Duplicated and redirected

Internet

Duplicated traffic
on the same link

Redirection on aggregation layer switches

Original traffic

Duplicated and redirected

Internet

No duplication
of the traffic

Redirection on distribution layer switches

Missed interesting
traffic flow

Traffic duplication and redirection points in the network

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

14

Figure 3.3: Multiple OpenFlow tables processing by the OpenFlow switch

3.1.1.4 Matching Flow Rules for Interesting Traffic

The matching part of the OpenFlow security redirection rules will be carried out according to the definition of the

interesting traffic. Additionally, these rules should include an ingress port matching, so that only traffic that is

coming from edge ports that connects hosts can be duplicated and redirected. In this way, the possibility of

duplicating and redirecting same traffic flows on multiple OpenFlow switches in the network is avoided.

3.1.1.5 Actions for Matched Traffic

The action part of the security flow rules will consist of multiple instructions and actions:

1. Instruction Apply-Actions immediately apply a defined Action List. This instruction is specified in OpenFlow

Specification 1.1 [OF1.1.0] and from OpenFlow 1.2 to 1.4, it is specified as an optional instruction, which

means it can be optionally supported by a switch. The Actions List for this instruction should be as follows:

1.1. Label interesting flow: done by the push-MPLS or push-VLAN actions, which label redirected flow with

a ‘security’ MPLS label or VLAN tag. Labelling of the redirected packets enables the efficient forwarding

through the network toward the security appliance. The objective is to label the duplicated and redirected

packet that is destined for the security appliance, so the rest of the OpenFlow switches in the network

can forward this packet solely based on that label. Our proposal is to use network-wide allocated labels

for each security appliance that is used in the network. The label is then realised as a network-wide

MPLS label allocated for this purpose, VLAN tag (number) or even specifically allocated destination

MAC address. This action is realised with OpenFlow “push-MPLS” action or “push-VLAN” action.

1.2. Duplicate and redirect interesting flow: action Output is used to forward duplicated and “labelled”

packet toward security appliance on the appropriate OpenFlow switch port.

1.3. Remove label: pop-MPLS or pop-VLAN actions change redirected / modified packet back to the original

packet, so it can be used for regular forwarding rules in next flow tables.

2. Instruction GoTo-Table to continue processing an original packet by the regular traffic flow rules in next or

subsequent flow tables. This action is used to forward a regular packet toward its real destination.

In case that the packet doesn’t match any flow rule in the security redirection table, the packet should also be

processed further by other flow tables in the OpenFlow switch. This is realised with the Table-Miss entry in the

security redirection table that should point to the next table in the pipeline, as shown in Figure 3.4, below.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

15

Figure 3.4: Processing the packets in OpenFlow “Table 0”

3.1.1.6 Forwarding of the Interesting Traffic

Further forwarding of the duplicated and redirected interesting traffic through the network is carried out solely

based on the security MPLS label or VLAN tag. This approach is very efficient and scalable, because a large

number of redirected flows can be forwarded according to the single OpenFlow rule matching the security label

on all intermediate OpenFlow switches. It also provides full control of traffic forwarding independent of the

underlying vendor implementations of routing and forwarding mechanisms (such as ERSPAN or PSAMP). The

requirement for this approach is that the path for the redirected traffic flow from each OpenFlow switch to security

appliance needs to be determined. These paths can be created manually by the administrator, can be calculated

based on algorithms (e.g. shortest path) or can be determined/calculated by OpenFlow controller or other SDN

applications. As previously stated, path calculation algorithms are out of the scope of this work. When the paths

from each OpenFlow switch toward the security appliance are determined, SDNtrap should install flow rules on

all intermediate OpenFlow switches that will forward labelled packets. There are a number of other important

issues related to this OpenFlow rule:

 The highest priority rule: This rule should be installed as the “first” OpenFlow rule (i.e. with the highest

priority) in the security redirection table (Table 0) of the OpenFlow switches. The reason is to avoid

additional duplication and redirection of the already redirected traffic on intermediate switches on the path

from first OpenFlow switch to the security appliance.

 Matching conditions: As a precaution from the looping packets or insertion of fake packets from hosts,

besides matching the security MPLS label, the OpenFlow rule should have an additional matching

condition that matches downstream ports connected to other OpenFlow switches in the network. An

additional rule can be created that drops packets with the allocated MPLS label coming from all other

ports (edge ports that connect hosts).

Match in
Table 0?

Packet in
Start from the Table 0

(Security redirection table)

Instruction Apply-Actions (immediate apply):
- Push MPLS (or VLAN) label
- Output on port (toward security appliance)
- Pop MPLS (or VLAN) label

Instruction Goto-Table:
- Next table in pipeline for
regular traffic flow forwarding

Yes

No

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

16

 Egress switch: The OpenFlow switch closest to the security appliance should have a flow rule that

matches specifically matches allocated MPLS label, with additional action for popping the label

(OpenFlow Pop action) and forwarding flows to security appliance. This additional action ensures that

security appliance will receive original flow, without MPLS label, on its tap interface.

Figure 3.5: Forwarding of the redirected packets based on the MPLS label

3.1.1.7 Conclusion

The proposed solution is using features of the OpenFlow specification 1.1 [OF1.1.0] and above, specifically,

multiple OpenFlow tables and the optional Apply-Actions instruction. The assumption of this solution is that

forwarding in the network would be mostly realised with flow rules preinstalled on the OpenFlow switches by the

OpenFlow controller, so a minority of the traffic flows will be redirected to the OpenFlow controller for decisions

(or unknown traffic will be dropped). The SDNtrap application shares the information with OpenFlow controller or

other SDN application for calculation/creation of forwarding path from every OpenFlow switch to the security

appliance and for identification of the OpenFlow switches closest to the source of the interesting traffic.

The SDNtrap concept is designed to be as transparent for the existing traffic as possible, although it requires

reservation of Table 0 for security purposes, so the controller cannot use it for applying ‘normal’ flow rules. This

concept is also scalable as forwarding security-redirected traffic on intermediate OpenFlow switches is solely

based on a single rule-matching, predefined-security MPLS label or VLAN tag. Further steps may include

additional communication between the security appliance and SDNtrap in order to filter undesired traffic.

IDS
appliance

Web Server

Host 1

Host 2

O
u

t
tr

af
fi

c
fl

o
w

D

u
p

lic
at

ed
 a

n
d

 r
ed

ir
ec

te
d

HTTP out flowHTTP in flow
HTTP out packets

HTTP out flow

HTTP in packets

HTTP in flow

In
 t

ra
ff

ic
 f

lo
w

D
u

p
lic

at
ed

 a
n

d
 r

ed
ir

ec
te

d

Ingress
OF switch

Ingress
OF switch

Intermediate
OF switch

Egress
OF switch

Redirected & duplicated packets
labeled with specific MPLS label

Forwarding of all redirected
packets and flows only based on
MPLS label and incoming port

Intermediate
OF switch

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

17

3.1.2 Redirection of the Complete Traffic Flow

In the second scenario, Firewall or IPS security appliance is introduced into the network for the purpose of the

security analysis and manipulation or filtering of the network traffic. The network administrator has a requirement

is to define specific traffic flows of interest and to redirect and forward them to the security appliance. In Figure

3.6, an OpenFlow-enabled network in the “converged state” is considered, where the OpenFlow controller has

already configured appropriate flow tables of OpenFlow switches.

Figure 3.6 Redirection of the complete traffic flow scenario (regular traffic flow)

It is very important to note that under normal conditions, regular traffic-forwarding decisions preconfigured in the

network must not be changed. These OpenFlow rules can be configured by other OpenFlow controller

applications (e.g. routing application) or administrator, so it is important not to change OpenFlow forwarding rules

already configured on the switches. SDNtrap should only compose and apply additional flow rules in order to

enforce redirection of the complete traffic flow.

A scenario is illustrated in

Figure 3.7 where the configured interesting traffic flow is redirected toward the security appliance. A simple

scenario can be considered where Firewall or IPS devices have two interfaces labelled as Inside and Outside

interface and traffic is forwarded between those two interfaces, according to the security policy configured on the

Inside interface

Firewall/IPS
appliance

Host 1

Host 2

Out traffic flow

In traffic flow

Scenario: Regular traffic flow path through the network
is already determined and established with the flow rules
configured by the OpenFlow controller.

OF switch

OF switch

OF switch

OF switch

OF switch

Openflow
Controller

Internet

Outside interface

Out traffic flow

In traffic flow

Out traffic flow

In traffic flow

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

18

security appliance. It is important to note that one direction of the traffic will be redirected to enter the Inside

interface of the security appliance, and after processing, will be forwarded on the Outside interface according to

the security policy. The other direction of the traffic flow will be redirected to the Outside interface, and after

processing will be forwarded on the Inside interface of the security appliance.

Figure 3.7 Redirection of the complete traffic flow scenario (regular traffic flow)

3.1.2.1 Proposed Solution for Redirection of the Complete Traffic Flow

The proposed solution uses features of the OpenFlow Specification 1.1 and above, specifically multiple

OpenFlow tables and optional “Apply-Actions” instruction. For the successful redirection of traffic, the proposed

solution needs the following information to be defined by an administrator:

 Interesting traffic – Definition of the traffic that has to be redirected. It should contain matching conditions

for traffic flows (e.g. source/destination addresses, ports), together with the specification of the security

appliance interface (Inside or Outside), where this traffic needs to be forwarded.

 Location of the security appliance interfaces – point of attachment in the network (port and switch) for

both Inside and Outside interfaces.

Out flow redirected Inside interface

Firewall/IPS
appliance

Host 1

Host 2

Out fl
ow re

dire
cted

O
u

t
fl

o
w

 r
e

d
ir

e
ct

e
d

Out traffic flow

In flow redirected

Out flow redirected

Out flow processed

Out flow
 processed

In traffic flow

Scenario: Network traffic packets flow needs to be
security checked at the security appliance (firewall or
IPS). Both outgoing and incoming traffic flows needs to
be redirected to the security appliance. Each direction of
the traffic flow needs to enter security device on the
appropriate interface.

OF switch

OF switch

OF switch

OF switch

OF switch

Openflow
Controller

Internet

Outside interface

O
u

t flo
w

 p
ro

ce
sse

d

Out flow processed

In flow processed

In flo
w processe

d

In
 f

lo
w

 p
ro

ce
ss

e
d

O
u

t flo
w

 re
d

ire
cte

d

In flow processed

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

19

 Security labels – network-wide MPLS labels or VLAN tags that will be used for labelling interesting traffic.

In this scenario, two labels or tags are used, one for Inside and one for Outside interface of the security

appliance.

The proposal for a complete traffic-redirection solution uses the same concepts and features as the previous

solution for the security duplication and redirection of the traffic (see Section 3.1.1.1). In the following sections,

relevant differences between the solution for redirection of the complete traffic flow and duplication and

redirection of the traffic will be described.

3.1.2.2 Point of Duplication and Redirection

It is proposed that the traffic redirection should be carried out on the OpenFlow switch closest to the source of

the traffic. For each traffic flow defined as interesting by the administrator, the SDNtrap should determine the

closest OpenFlow switch to the source, where the security redirection flow rules will be applied.

Figure 3.8: Complete traffic redirection of different traffic flows

3.1.2.3 Usage of Multiple Flow Tables

This scenario does not require duplication of traffic flows, so the solution does not actually need multiple tables.

However, for this solution, the security redirection rules must be processed before “regular” traffic forwarding

Original traffic

Redirected traffic

Internet

Redirected and
label traffic flow

Redirected and
labeled traffic flow

Traffic processed by security appliance

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

20

rules. This can be accomplished by using multiple flow tables, as described in the first scenario (see Section

3.1.1), but it can be also accomplished by using higher priority for security redirection rules. If the solution

prioritises security redirection rules over regular forwarding rules, then the security redirection rules will be

matched and processed before regular rules. In case there is no rule match among higher priority security rules,

the OpenFlow switch continues matching regular rules with lower priority. With this approach only one flow table

is used, so this solution is compatible with OpenFlow specification 1.0 [OF1.0.0]. If the solution uses multiple

tables, then it will need OpenFlow switches that are compatible with the OpenFlow Specification 1.1. Additionally,

there should be Table-Miss entry in the security redirection table, as explained in the previous scenario.

3.1.2.4 Matching Flow Rules for Interesting Traffic

The matching part of the OpenFlow security redirection rules will be carried out according to the definition of the

interesting traffic. Additionally, it is recommended that these rules include an ingress port matching, so that only

traffic coming from edge ports that connects hosts can labelled and redirected. This avoids the possibility of

labelling and redirecting the same traffic flows on multiple OpenFlow switches in the network. In this scenario,

traffic flow is matched and traffic redirected to two different interfaces on the security appliance, Inside and

Outside. For this reason, when defining matching rules for interesting traffic, the administrator should specify a

security appliance interface where this traffic should be redirected.

SDNtrap application can introduce a simple convention for the case of bidirectional traffic flows: that the “first”

specified address is behind the Inside interface and that the “second” specified address is behind the Outside

interface. In that case, two rules can be created:

 Traffic flow from source “first” address to destination “second” address is redirected to the Inside interface.

 Traffic flow from source “second” address to destination “first” address is redirected to the Outside

interface.

3.1.2.5 Actions for Matched Traffic

The action part of the security flow rules will consist of the following instructions and actions:

1. Instruction Write-Actions (merge actions to the Action Set). This instruction is included in OpenFlow

Specification 1.0 and from OpenFlow Specification 1.2 to 1.4, is a required instruction, which means it must

be supported by OpenFlow switch. The actions for this instruction should be as follows:

1.1. Label interesting flow: This is done by the Push-Tag action, which labels the redirected flow with a

‘security’ MPLS label or VLAN tag. It is used for labelling of the redirected packets for the efficient

forwarding through the network toward the security appliance, in the same way as done in the first

scenario. The objective is to label the redirected packet that is destined for the security appliance, so

the rest of the OpenFlow switches in the network can forward this packet solely based on that label. Our

proposal is to use network-wide allocated labels for each interface of a security appliance that is used

in the network. Proposed usage of network-wide MPLS labels allocated for this purpose, but this can be

realised with specifically allocated VLAN tags (number) or even specifically allocated destination MAC

addresses.

1.2. Redirect interesting flow: action Output to forward packet toward security appliance. This is used to

forward a labelled packet toward the security appliance on the appropriate OpenFlow switch port.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

21

Because the action part of the proposed security redirection rules does not have a GoTo-Table instruction, these

actions will be executed immediately after matching the rule and redirecting traffic. It is important to note that in

the case of using MPLS labels for labelling of the redirected traffic flows, OpenFlow switches compatible with the

OpenFlow specification 1.1 will be needed. In the case of using VLAN tags to label the redirected traffic flows,

OpenFlow switches compatible with the OpenFlow specification 1.0 will be sufficient.

3.1.2.6 Forwarding of the Interesting Traffic

Further forwarding of the duplicated and redirected interesting traffic through the network is carried out solely

based on the security MPLS label or VLAN tag, as described in the first scenario.

Figure 3.9 Example of the flow table 0 of an OpenFlow switch

Figure 3.9 is an example of the OpenFlow switch flow table in the case that a single flow table is used for this

scenario. With the highest priority of 65535 are the rules for forwarding already redirected and labelled traffic

flows coming from downstream switches. Priority 65534 is used for rules that should drop any packets labelled

with allocated security MPLS labels coming from all other interfaces where they are not supposed to come,

avoiding looping or malicious packets. For other security redirection rules, priority of 65000 is used. All other

regular forwarding traffic rules are using priority 32768.

3.2 Conclusion

In this scenario, there is no duplication of the redirected traffic, but the same traffic flow is redirected toward the

security appliance. For that reason, the proposed redirection on ingress OpenFlow switches will not result in the

possible duplication of the traffic and congestion on upstream interfaces.

The solution for this scenario can have two possible implementations:

 An implementation compatible with OpenFlow Specification 1.0 that uses a single flow table and VLAN

tags for labelling of redirected traffic.

In port Match condition Priority Actions

from downstream switch SDNtrap MPLS label for Inside 65535 fwd toward Firewall Inside interface

from downstream switch SDNtrap MPLS label for Outside 65535 fwd toward Firewall Outside interface

any port SDNtrap MPLS label for Inside 65534 drop

any port SDNtrap MPLS label for Outside 65534 drop

edge port sec interesting traffic 65000 push MPLS Inside, fwd to Firewall Inside

edge port sec interesting traffic 65000 push MPLS Outside, fwd to Firewall Outside

.. … … …

regular rule regular rule 32768 regular rule

regular rule regular rule 32768 regular rule

… … … …

Flow rules in single flow table example

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

22

 An implementation compatible with OpenFlow Specification 1.1 that uses multiple flow tables and/or

MPLS labels for labelling of redirected traffic, since both of these features are not supported in OpenFlow

1.0.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

23

4 Monitoring

4.1 Introduction to Monitoring in OpenFlow and SDN

Environments

Software Defined Networking (SDN) infrastructures introduce several new challenges to monitoring processes

as well as to operations, administration and management (OAM). One such challenge is that applications are no

longer tied to dedicated physical resources and with new levels of abstraction monitoring and OAM cannot be

limited to physical infrastructures, but must also consider various layers and individual applications with their

traffic flows. In contrast to traditional networking, another major challenge (as well as an opportunity) for SDN-

based networks is that monitoring and OAM information can be used as direct feedback to the controller to

automatically change network behaviour and adjust flow control based on the retrieved information.

The following sections look at monitoring in SDN and OpenFlow environments in detail: Section 4.2 starts out

with an investigation of flow-based monitoring in OpenFlow environments. Section 4.3 provides solutions for flow

monitoring by exporting relevant information over legacy NetFlow/IPFIX protocols. The interested reader can find

more information in 5Appendix B ‘Overview of Business Solutions for SDN Monitoring’ and 5Appendix C

‘OpenFlow Vendor Overview: Optional OpenFlow features and Features for Monitoring and Statistics’.

4.2 Flow-based Monitoring in OpenFlow Environments

Traditional monitoring solutions often rely on NetFlow/IPFIX or sFlow (sampled Flow)-based traffic analysis.

NetFlow [CIS-2014] was originally proposed by Cisco and offers IP traffic statistics collected on a router interface

such as source IP and destination IP, class of service attributes, protocols, bandwidth utilisation or peak usage

times that allow a network administrator to determine causes of congestion. NetFlow was superseded by the

Internet Protocol Flow Information eXport (IPFIX), as described in RFC 5101 [RFC-5101] and RFC 5102 [RFC-

5102]. With NetFlow/IPFIX based traffic analysis the IP flow information that was collected by a NetFlow-enabled

router is sent to an external server where the collected information is analysed and interpreted. sFlow is a similar

sampling technology that is supported by a large consortium of vendors producing network components and is

especially suitable for high-speed networks, as it offers random sampling [SFL-2014]. In contrast to passive

monitoring with the Simple Network Management Protocol (SNMP) [RFC-3410], both NetFlow and sFlow allow

further insight on application-related details [PAT-2010].

As SDN controllers need to make routing decisions for flow control based on current network conditions, they

can certainly benefit from NetFlow or sFlow data analysis [PLI-2013a]. The following section focuses on how

SNMP/NetFlow/IPFIX/sFlow-based monitoring can be used in OpenFlow environments.

4.2.1 Monitoring with sFlow

Just like NetFlow sFlow [SFL-2004] is a mechanism for monitoring that does not rely on network probes, but

allows the network administrator to analyse traffic based on flows. sFlow was first defined in RFC 3176 [RFC-

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

24

3176] and is capable of randomly sampling one packet out of a configurable number of packets on an interface,

whereas NetFlow captures accurate total byte readings between hosts [REE-2008].

In NetFlow and IPFIX protocols, flow records are built on network flows that have the same attributes, such as

ingress interface, source and destination IP, source and destination TCP/UDP port and IP ToS [PLI-2013b].

During processing, these packet fields are extracted and a hash function is computed over these fields to allow

the lookup of an already existing entry for a flow in the flow cache. Existing flow records are brought up to date

and new flows records are started for new flows. Periodically or after a timeout, the flow records are sent to the

flow collector for traffic analysis. In NetFlow, these flow records represent the number of active connections

between hosts [POW-2012].

sFlow, on the other hand, simply samples packet headers and sends this information for analysis. Without this

need for building flow records for active connections and flushing flow caches, there is considerably less delay

involved when compared to NetFlow, as the monitoring information on sampled packets is immediately available

for analysis. The sampled information in sFlow is also not limited to the first 1200 bytes of a packet as in NetFlow

and with high traffic rates and frequent sampling settings, the sFlow record rate for the sFlow collector can

become large.

Figure 4.1 describes the two methods of sampling that are offered in sFlow:

 In Flow-based sampling, an sFlow-enabled port samples the packet statistics and sends it to the collector.

 In counter-based sampling, sFlow uses a polling function that periodically obtains standard interface

counters for network analysis from its sFlow agents in the switches.

Figure 4.1 Flow-based and counter-based sampling in sFlow; sFlow agents are embedded in network

components and capture packet samples and send these sFlow datagrams to the sFlow collector [REA-2013].

SYS161521 32311817 10/100/1000Base-T 48473433 5049 5251 5453

Speed: Green=1000Mbps, Yellow=10/100Mbps

SFP+ QSFP+

Green=10Gbps, Yellow=1Gbps Green=40Gbps, Yellow=10Gbps

Device

HP 5900
Series Switch
JG510A

sFlow Collector

SYS161521 32311817 10/100/1000Base-T 48473433 5049 5251 5453

Speed: Green=1000Mbps, Yellow=10/100Mbps

SFP+ QSFP+

Green=10Gbps, Yellow=1Gbps Green=40Gbps, Yellow=10Gbps

Device

HP 5900
Series Switch
JG510A

SYS161521 32311817 10/100/1000Base-T 48473433 5049 5251 5453

Speed: Green=1000Mbps, Yellow=10/100Mbps

SFP+ QSFP+

Green=10Gbps, Yellow=1Gbps Green=40Gbps, Yellow=10Gbps

Device

HP 5900
Series Switch
JG510A

sFlow agent

Flow sampling
Counter sampling

sFlow agent

Flow sampling
Counter sampling

sFlow agent

Flow sampling
Counter sampling

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

25

4.2.2 sFlow vs. NetFlow/IPFIX Monitoring in SDN

For an OpenFlow or SDN controller to be able to effectively take action upon feedback from monitoring it is

important that the delay of the different components involved in the feedback process is kept to a minimum. For

example, if a controller is to react to a disturbance in the system, several different types of delays must be taken

into account [PLI-2013c], including:

 Measurement and monitoring systems need time to identify a problem.

 There may be a need for a planning delay to determine what type of action is to be taken.

 A configuration delay may be required to put the appropriate action in place.

 Propagation delay may occur while new route changes are taking effect and are propagated through the

system.

Monitoring with NetFlow/IPFIX also introduces significant measurement delay, because measurements are not

reported until the connection ends, which makes the length of the delay proportional to the duration of the

connection [PLI-2011]. The packet sampling technique of sFlow, on the other hand, introduces significantly less

delay, as the sampled packets are immediately available for traffic analysis and therefore allow for the rapid

detection of large flows [PLI-2013b]. For this reason, sFlow is being used in anomaly detection in SDN

environments [GIO-2014], although its sampling-based mechanism offers less accuracy if not enough packets

are being sampled [PLI-2009].

4.3 Flow Monitoring in OpenFlow Environment Using

NetFlow/IPFIX

4.3.1 Introduction

One of the most important parts of network monitoring is the monitoring of traffic structure regarding source and

destination of the traffic, applications, content and other parameters comprising network traffic. Today’s

predominant technology for such monitoring is flow monitoring using NetFlow.

There are number of network devices that support NetFlow technology, as well as number of applications that

collect and analyse NetFlow exported data. These technologies have been used by a number of service providers

and enterprises as a valuable asset in identification and understanding of traffic usage by applications and users.

This part of the JRA2 Task 1 activity aimed to investigate the potential of flow monitoring using NetFlow/IPFIX

protocols in OpenFlow environment. Research has investigated how to use NetFlow technology, whether it can

be used as is or it has to be extended, comparison of OpenFlow match fields and NetFlow supported fields.

The main idea of the research was to monitor traffic flows in the OpenFlow network and to export relevant

monitoring data over the well-known NetFlow/IPFIX protocols.

The result of the research is the proposal of the OpenFlow to NetFlow (OF2NF) application to be implemented

on top of the OpenFlow controller to be used in both a reactive and proactive OpenFlow environment.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

26

4.3.2 History of NetFlow

NetFlow was originally developed as a packet-switching technology for Cisco routers, with Cisco IOS software

implementation for the Cisco 7000, 7200 and 7500 [NF-wiki]. The NetFlow switching technology, also known as

fast switching, was created to improve routing performance.

The first packet of a traffic flow would be sent to the CPU to determine the result of the forwarding process (e.g.

routing table lookup, ACL lookup) and then to create a NetFlow switching record. The NetFlow switching record

would be used for all subsequent packets of the same flow for faster forwarding, until the expiration of the flow.

The NetFlow switching record was also known as a route cache record, by caching a result of the routing lookup.

Once the router already has a NetFlow cache records, it was only needed to count the bytes and packets of the

forwarded flows and to export them to the monitoring server. The protocol to export this information was named

NetFlow.

NetFlow switching technology for packet forwarding on routers was replaced by Cisco Express Forwarding (CEF),

but NetFlow as flow monitoring technology was retained and further developed.

Further information on NetFlow can be found in the more detailed document Flow monitoring in OpenFlow

environment using NetFlow/IPFIX protocols [RFC-5101] NetFlow specifications [NFv5] [NFv9] and IPFIX

specifications [IPFIX] [IPFIX-e].

4.3.3 OpenFlow Capabilities Regarding Flow Monitoring

4.3.3.1 OpenFlow Overview

OpenFlow is the first standard communications interface defined between control and forwarding layers of SDN

architecture [ONF-WP]. OpenFlow allows direct access to and manipulation of the forwarding plane of network

devices, such as switches and routers. Manipulation of the forwarding plane of network devices is done by the

software of the OpenFlow controller.

OpenFlow uses the concept of flows to identify network traffic based on pre-defined match rules that can be

statically or dynamically programmed by the OpenFlow controller. Match rules are defined by matching fields

from various network protocols such as Ethernet/802.1Q, IPv4/IPv6, TCP/UDP, MPLS, etc.

The OpenFlow protocol is implemented on both sides of the interface between network devices and the

OpenFlow controller.

4.3.3.2 OpenFlow Network Design Regarding Flow Installation

One of the fundamental difficulties inherent in the design of an OpenFlow production network is the traffic

forwarding process and flow rules installation by OpenFlow controller. Three approaches to this are identified

below [NS-blog]:

 Reactive – The OpenFlow switch does not have any flow rules configured in its flow tables, except the

“fallback” rule that will forward the packet to the OpenFlow Controller. When the first packet of the traffic

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

27

flow comes into the switch, it will forward the packet to the OpenFlow controller for the decision regarding

this flow. The OpenFlow controller will make the decision regarding that flow and install an appropriate

matching flow rule with appropriate actions onto the switch. The switch will forward all subsequent packets

of the same flow according to the rule installed by the OpenFlow controller.

 Proactive – The OpenFlow controller will not wait for the specific traffic flows or types of traffic to appear

in the network, but will install appropriate flow rules onto switches with their forwarding actions, covering

all the traffic that can appear in the network in advance.

 Hybrid – The hybrid design is supposed to combine the advantages of the previous two approaches and

should provide a flexibility and control of reactive approach for particular traffic, while preserving low-

latency forwarding and resource-saving advantages of the proactive approach for the rest of the network

traffic.

4.3.3.3 OpenFlow Capabilities Regarding Flow Monitoring

This section identifies important OpenFlow capabilities that can be used for the purpose of effective flow

monitoring and accounting.

Flow tables

OpenFlow switch Flow Tables consist of the following entries:

 Match fields – key fields used to define a flow.

 Priority – important for the appropriate prioritisation and matching of the counting flows.

 Counters – providing flow statistics about the packets and bytes matched by the flow.

 Instructions – actions for flow processing and forwarding.

 Timeouts – idle and hard timeout for flow expiration, very important for flow export

 Cookie – data value chosen by the controller that can be used to filter flow statistics, modification or

deletion. It is not used when processing packets.

Counters

According to the OpenFlow Specification 1.4, counters are maintained for each flow table, flow entry, port, queue,

group, group bucket, meter and meter band [OF1.4.0]. Counters are either required or optional, depending on

the specification. Counters that are important for flow monitoring purpose are “per flow entry” counters:

 Received Packets – 64-bit counter – Optional

 Received Bytes – 64-bit counter – Optional

 Duration (in seconds) – 32-bit counter – Required

 Duration (in nanoseconds) – 32 bit counter – Optional

Per-flow entry counters for bytes and packets are still optional.

Flow Expiry and Removal

Flow rules can be removed from flow tables in three ways: by switch flow expiry mechanism, by the request of

the controller, and by the switch eviction mechanism.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

28

An OpenFlow switch runs a flow-expiry mechanism, which is controlled by configuration of flow rules. Each flow

rule has two associated timeouts associated:

 Idle timeout – Flow rule will be removed from the flow table if it doesn’t match any packet during the idle

timeout period.

 Hard timeout – Flow rule will be removed from the flow table after expiration of the hard timeout,

regardless of how many packets it has matched.

Both timeouts need to have non-zero values in order to be active.

It is important to note that these OpenFlow timeouts are very similar to the NetFlow timeouts.

Messages

Flow Removed Message

When a flow rule is removed by the OpenFlow switch, it has to check if the flow rule has the

OFPFF_SEND_FLOW_REM flag. If this flag is set, the switch must send the flow-removed message to the

controller. The OpenFlow Flow Removed message structure can be found in [OF1.4.0].

The important part of the Flow Removed message are Bytes and Packets counter fields that represent statistics

related to the removed flow rule and that can be used for flow monitoring. Additionally, the structure of the Flow

Removed message matches the Flow Rule containing values of the matching fields and information about flow

duration, which is also important for monitoring purposes, table ID and cookies, which can be used to filter

messages from flows of interest.

Individual Flow Statistics Message

Among a number of messages that are used in OpenFlow protocol for different communication between

OpenFlow controller and switches, there is a message used for getting individual flow statistics that is a Multipart

message from the Controller-to-Switch group of messages.

Multipart messages are used to send requests or replies that potentially carry a large amount of data that would

not always fit in a single OpenFlow message, (which is limited to 64KB). They are primarily used to request

statistics or state information from the switch. More information about the messages can be found in OpenFlow

specification [OF1.4.0]

4.3.4 Scenario for Flow Monitoring of the OpenFlow Network Using NetFlow/IPFIX

Although use of NetFlow and OpenFlow in today’s networks is different by nature (the former is used for flow

monitoring and the latter for programming flow forwarding), similarities can be found between the original usage

of NetFlow switching and OpenFlow in a reactive approach described in the previous section. Both of these

technologies has resource intensive processing on the first packet of the traffic flow, installation of the cache

record / flow rule matching subsequent packets of the traffic flow and forwarding according to the decision/action.

On the other side, today’s networks use NetFlow as a flow monitoring technology and protocol, while OpenFlow

is used as a traffic forwarding technology and protocol.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

29

This section describes the main idea how to use NetFlow/IPFIX protocols for flow monitoring of the OpenFlow

enabled network. The objective is to use existing flow collectors and flow analysing applications for monitoring of

the OpenFlow environment.

The research assumes an environment where OpenFlow switches do not support NetFlow/IPFIX export of flow

statistics. In this situation, the objective is that the OpenFlow controller (or controller’s application) collects flow

statistics from OpenFlow switches and to export them over NetFlow or IPFIX protocols to the flow analysing

applications. Continuous collection of flow statistics for security or accounting purpose for all or the part of the

network traffic (which should be defined by user) is under consideration. Figure 4.2 represents the proposed

scenario.

Figure 4.2: Scenario demonstrating the collection if flow statistics over OpenFlow and exporting it over

NetFlow/IPFIX

This research can be divided in two problems:

 Collecting flow statistics from switch flow tables by OpenFlow controller.

 Exporting flow statistics from OpenFlow controller over NetFlow or IPFIX protocols.

4.3.4.1 Collection of flow statistics over OpenFlow

After detailed analysis of available solutions for collection of the flow statistics over OpenFlow protocol, this

research proposes the use of the Flow Removed message. Use of this message has a very similar paradigm to

the NetFlow export mechanism and is better suited to the collection of the OpenFlow statistics that will be sent

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

30

over NetFlow protocol than use of the OpenFlow Individual Flow Statistics message. More information can be

found in Appendix C.

4.3.5 OF2NF Application Concept

The concept of the OpenFlow application that collects OpenFlow flow statistics and exports it over the NetFlow

protocol will be described in this section. This application concept is called OpenFlow to NetFlow (OF2NF).

The important objectives and assumptions of the OF2NF applications are:

 The application should be part of an OpenFlow controller or “sit” on top of an OpenFlow controller, either

using its API or its northbound interface.

 Use of OpenFlow Multiple Tables functionality, which is compatible with OpenFlow Specification 1.1 and

above. The support of this functionality is needed by the OpenFlow controller and switches.

 For simplicity, any stateful behaviour or any data exchange with other controllers’ applications should be

avoided.

 There are requirements regarding the support of certain OpenFlow features that the OpenFlow controller

or controllers’ “Forwarding” application need to support.

 The applications can be deployed in the OpenFlow network environment that uses Reactive or

Proactive/Hybrid design where OpenFlow network design influence the design and feature of the OF2NF

application.

4.3.5.1 OF2NF in Reactive OpenFlow Environment Scenario

The first and simpler scenario for the OF2NF application is in a reactive OpenFlow environment, as shown in

Figure 4.3.

In the reactive environment, for each new flow, OpenFlow switches forward packet to the OpenFlow controller

(Packet-In message) where the packet is analysed and the decision is made about forwarding of the packet. The

OpenFlow controller or its “Forwarding” application installs the appropriate flow rule that matches the flow and

executes the actions according to the decision (Flow-Mod message). When the flow timeout is reached (either

by an idle-timeout or hard-timeout) flow is removed from switch flow table and flow removed message is sent to

the OpenFlow controller. This message is handled by the OF2NF application and exported to the NetFlow

collector over NetFlow protocol.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

31

Figure 4.3: OF2NF application in the reactive OpenFlow environment

In this scenario, there are certain requirements for the “Forwarding” application:

 For all flows that are installed, idle-timeout and hard-timeout should be configurable.

 For all flows that are installed, the flow-removed flag should be configurable.

It is also important to have configurable flow-matching fields in the Forwarding application, which will define

granularity of the flows. The minimum of the matching fields that should be detected and used/installed by the

“Forwarding” application should be key fields of the NetFlow defined flow. It would also be possible to include

additional header fields such as MAC addresses, VLAN IDs, MPLS labels and other fields defined by OpenFlow,

which will enrich information available to the NetFlow application. Lesser-matching fields rather than key fields

may also be included, but this will limit available information for NetFlow analysis, which is contrary to the

objectives of this task. It is also possible that some NetFlow application would not work correctly if the key flow

fields are not available or equal zero.

4.3.5.2 OF2NF in a Proactive or Hybrid OpenFlow Environment Scenario

The second and more advanced scenario for the OF2NF application is in a proactive OpenFlow environment,

which can be also applied to a hybrid OpenFlow environment. In the proactive environment, all flow rules are

predetermined and installed on OpenFlow switches before actual traffic comes to the switch. More details about

this scenario can be found in Section 4.3.4.

NetFlow
collector &
analyzing
application

OpenFlow
protocol

5.
NetFlow/IPFIX

Export

Traffic

1.
Flow

Lookup

2.
Packet-In

3.
Flow-Mod

4.
Flow Removed

Traffic

Idle Hard

… … … … …

… … … … …

… … … … …

… … … … …

x 30 300 flow key fields PORT: 1

… … … … …

… … … … …

… … … … …

0 any CONTROLLER

Timout
Priority Match Action

OpenFlow switch flow table

OF switch
2

OF switch
1

H11 - 10.0.0.11

H12 - 10.0.0.12

H21 - 10.0.0.21

H22 - 10.0.0.22

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

32

4.3.6 Export of Flow Statistics from OpenFlow Controller Over NetFlow/IPFIX

When the OF2NF application receives the flow statistics information, it needs to map and convert it to the

appropriate format used by the NetFlow or IPFIX protocols. Some of the flow matching fields and information can

be directly mapped to the NetFlow/IPFIX fields, some fields require simple manipulation to be adjusted to the

NetFlow/IPFIX format, and some fields are not available from OpenFlow statistics. Table 4.1 summarises the

analysis and mapping of NetFlow/IPFIX and OpenFlow fields. It represents how the NetFlow/IPFIX fields are

populated and from which OpenFlow available information. The column “Details” marks proposed solutions by

this research, where “proposed, N/A” means that the proposed solution is not available in current implementation

of the OpenFlow specification. More details can be found in the document: Flow monitoring in OpenFlow

environment using NetFlow/IPFIX protocols [RFC-5101].

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

33

Table 4.1: Populating NetFlow/IPFIX fields with OpenFlow information

ID NetFlow Fields IPFIX Fields OpenFlow information Details

1 IN_BYTES octetDeltaCount Byte counter from OF Flow Removed message

2 IN_PKTS packetDeltaCount Packet counter from OF Flow Removed message

4 PROTOCOL protocolIdentifier OFPXMT_OFB_IP_PROTO match field

5 SRC_TOS ipClassOfService Combining OFPXMT_OFB_IP_DSCP and OFPXMT_OFB_IP_ECN match fields

7 L4_SRC_PORT sourceTransportPort OFPXMT_OFB_TCP_SRC or OFPXMT_OFB_UDP_SRC depending on the L4 protocol

8 IPV4_SRC_ADDR sourceIPv4Address OFPXMT_OFB_IPV4_SRC match field

9 SRC_MASK sourceIPv4PrefixLength mask from the OFPXMT_OFB_IPV4_SRC match field

10 INPUT_SNMP ingressInterface OFPXMT_OFB_IN_PORT match field

11 L4_DST_PORT destinationTransportPort
OFPXMT_OFB_TCP_DST or OFPXMT_OFB_UDP_DST depending on the L4 protocol.

In case of ICMP = (256 * OFPXMT_OFB_ICMPV4_TYPE + OFPXMT_OFB_ICMPV4_CODE)

12 IPV4_DST_ADDR destinationIPv4Address OFPXMT_OFB_IPV4_DST match field

13 DST_MASK destinationIPv4PrefixLength mask from the OFPXMT_OFB_IPV4_DST match field

14 OUTPUT_SNMP egressInterface Information could be retrieved from OpenFlow Cookie or OUTPUT action struct proposed

15 IPV4_NEXT_HOP ipNextHopIPv4Address If it is possible to get topology information it can represent Next Hop OpenFlow switch proposed, N/A

21 LAST_SWITCHED flowEndSysUpTime Estimated from the Flow Duration field from Flow Removed message proposed estimation

22 FIRST_SWITCHED flowStartSysUpTime Estimated from the Flow Duration field from Flow Removed message proposed estimation

27 IPV6_SRC_ADDR sourceIPv6Address OFPXMT_OFB_IPV6_SRC match field

28 IPV6_DST_ADDR destinationIPv6Address OFPXMT_OFB_IPV6_DST match field

29 IPV6_SRC_MASK sourceIPv6PrefixLength mask from the OFPXMT_OFB_IPV6_SRC match field

30 IPV6_DST_MASK destinationIPv6PrefixLength mask from the OFPXMT_OFB_IPV6_DST match field

31 IPV6_FLOW_LABEL flowLabelIPv6 OFPXMT_OFB_IPV6_FLABEL match field

32 ICMP_TYPE icmpTypeCodeIPv4 Calculated as 256 * OFPXMT_OFB_ICMPV4_TYPE + OFPXMT_OFB_ICMPV4_CODE

36 FLOW_ACTIVE_TIMEOUT flowActiveTimeout Can be exported from the OF2NF application if HARD timeout for configured flows is known

37 FLOW_INACTIVE_TIMEOUT flowIdleTimeout Can be exported from the OF2NF application if IDLE timeout for configured flows is known

55 DST_TOS postIpClassOfService Could be possible to obtain if Flow Removed message contain action struct proposed, N/A

56 IN_SRC_MAC sourceMacAddress OFPXMT_OFB_ETH_SRC match field

57 OUT_DST_MAC postDestinationMacAddress Could be possible to obtain if Flow Removed message contain action struct proposed, N/A

58 SRC_VLAN vlanId OFPXMT_OFB_VLAN_VID match field

59 DST_VLAN postVlanId Could be possible to obtain if Flow Removed message contain action struct proposed, N/A

60 IP_PROTOCOL_VERSION ipVersion Can be concluded from the matching fields and populated accordingly

64 IPV6_OPTION_HEADERS ipv6ExtensionHeaders OFPXMT_OFB_IPV6_EXTHDR

70 MPLS_LABEL_1 mplsTopLabelStackSection Combining OFPXMT_OFB_MPLS_LABEL, OFPXMT_OFB_MPLS_TC and OFPXMT_OFB_MPLS_BOS

80 IN_DST_MAC destinationMacAddress OFPXMT_OFB_ETH_DST match field

81 OUT_SRC_MAC postSourceMacAddress Could be possible to obtain if Flow Removed message contain action struct proposed, N/A

130 exporterIPv4Address Can be populated with the IPv4 address of the OpenFlow switch that has sent Flow Removed proposed

131 exporterIPv6Address Can be populated with the IPv6 address of the OpenFlow switch that has sent Flow Removed proposed

136 flowEndReason Can be populated from the Reason field from Flow Removed message

139 icmpTypeCodeIPv6 Calculated as 256 * OFPXMT_OFB_ICMPV6_TYPE + OFPXMT_OFB_ICMPV6_CODE

150 flowStartSeconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

151 flowEndSeconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

152 flowStartMill iseconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

153 flowEndMilliseconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

154 flowStartMicroseconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

155 flowEndMicroseconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

156 flowStartNanoseconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

157 flowEndNanoseconds Estimated from the Flow Duration field from Flow Removed message proposed estimation

161 flowDurationMilliseconds from flow Duration field in Flow Removed message

162 flowDurationMicroseconds from flow Duration field in Flow Removed message

243 dot1qVlanId OFPXMT_OFB_VLAN_VID

244 dot1qPriority OFPXMT_OFB_VLAN_PCP

256 ethernetType OFPXMT_OFB_ETH_TYPE

NetFlow/IPFIX Fields How information is obtained from OpenFlow

Mapping between NetFlow or IPFIX fields and information available from OpenFlow

Not Available in NetFlow

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

34

4.3.7 Prototypes of OF2NF for Ryu Controller

For the purpose of creating OF2NF proof-of-concept (PoC), simple OF2NF application prototypes are created for

the Ryu controller [RYU].

4.3.7.1 OF2NF proof-of-concept in reactive scenario

For the reactive scenario proof-of-concept, the following OpenFlow Ryu applications have been created:

 A forwarding application that analyses the first packet of the traffic flow and creates appropriate

forwarding rules on the OpenFlow switch for forwarding the rest of the network packets in that traffic flow.

 OF2NF application that receives the Flow Removed messages and translates them to appropriate

NetFlow/IPFIX messages.

The proof-of-concept has been tested in the Mininet environment where the topology is the same as in Figure

4.3.

The PoC has showed that the OF2NF application is reporting the same bytes and packets counters values as

the native NetFlow export from the OVS switches. In addition, PoC has showed that OVS is reporting the first

packet of the traffic flow sent from the switch to the OpenFlow controller separately from the rest of the traffic

flow. Although the first packet of the flow is returned from the Controller to the switch for forwarding again through

the normal pipeline, this first packet is not counted again in the next flow record. More details about PoCs can be

found in Appendix B and C.

4.3.7.2 OF2NF Proof-of-Concept in Proactive Scenario

For the proactive scenario Proof-of-Concept the following OpenFlow Ryu controller applications has been created:

 Forwarding application that is creating proactive forwarding rules that are usually aggregated and forward

number of traffic rules. These rules are usually permanent or installed for a longer period of time.

 The OF2NF application in proactive mode matches traffic that should be monitored, creates flow rules for

counting bytes and packets of the traffic flows and redirects them to the forwarding flow tables by

proactive flow rules.

The PoC has shown that the OF2NF application is reporting the same bytes and packets counter values as the

native NetFlow export from the OVS switches.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

35

5 Conclusions

Due to the constantly-changing landscape of SDN solutions, the JRA2T1 results discussed in this document are

primarily focused on the GÉANT/NREN use cases, in a landscape where no SDN-capable equipment has yet to

be deployed in production within the European NRENs or GÉANT. Although many NRENs are interested in

SDN/OpenFlow capabilities [SIEN] [TC2013], the implementation of proposals presented herein are heavily

dependent on the adoption of SDN/OpenFlow by GÉANT and the NRENs. The proposed solutions and proof of

concept prototypes can be further developed to support production level services in the following areas:

 Cloud support as directly related to the gOCX concept developed by JRA1T2.

 (Connection-oriented) multi-domain SDN – a solution based on NSI to enable end-to-end circuits

provisioning.

○ A working proof of concept code has been delivered. This solution may enable an SDN/OpenFlow

domain (e.g. campus network) to support Bandwidth on Demand services.

 Security traffic duplication and redirection capabilities using OpenFlow can be used to reinforce security

applications in the network.

 Standard NetFlow monitoring based on OpenFlow switches can be possible by using or further

development of the PoC proposed by JRA2T1.

 Support for OAM in the network infrastructures based on Open vSwitches can be provided by using OVS

code enhanced in JRA2T1.

As part of the work carried out by JRA2T1, important information related to the current SDN/OpenFlow standards

and hardware capabilities which may be useful for any future SDN related work has emerged, such as differences

in OpenFlow specification support across different hardware. The hardware selected to implement SDN-enabled

services should support all the requirements imposed by the specific solution. It is also worth mentioning that

proposed solutions may often impose additional requirements on the controller or on the way the flow rules are

applied to the switch (e.g. using separate tables or priorities for specific functionalities).

There are a number of appendices to follow that include further information, relevant to OpenFlow/SDN, including:

 The results of an NREN and user community survey on the use of SDN in clouds, testbeds and campus

networks

 An overview of business solutions for SDN monitoring.

 OpenFlow features, as well as features for monitoring and statistics available from vendors.

 Multi-domain SDN Technologies for Cloud Computing and Distributed Testbeds, solutions and use-cases

for multi-domain SDN

 The concept of SDNapps – generic network functionalities running on top of the SDN/OpenFlow network

can be further reused to provide customized solutions to support specific packet forwarding requirements.

The evolution towards programmable networks seems inevitable, and there are already examples of services in

RENs using OpenFlow – see [I2AL] [I2VS]. The results and experience, gained within JRA2T1, support service

development in SA2, SA3 and SA7 and the overall SDN/OpenFlow adoption in GÉANT in NRENs.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

36

Appendix A Survey on clouds, SDN and NFV

In a collaboration between JRA1T2 and SA7, a survey within the NREN and user community focusing on

SDN/NFV and Clouds was elaborated [SURVEY]. The questionnaire primarily identifies the network requirements

based on the question ‘What can the network do for the clouds?’ This includes information about items/ideas

focused more technically on a “SDN/NFV framework” [SDN] [NFV], the network set-up, virtualisation and

processes.

The questionnaire was divided into four main sections (A–D):

Section A: The community section shows the affiliation/segment of clouds, the activities/research efforts using

clouds and the target audience, the end-user population consuming (new) cloud services, and the influence of

cloud computing on their organisations.

Survey Signees: Institute of Computer Science and Mathematics University of Latvia / HPC Laboratory, Institute

for Informatics and automation problems, National Academy of Science of Armenia/ IUCC – Inter-University

Computation Centre, Aviv University, Israel / University of Crete / FORTH / UIIP NASB, BASNET-United Institute

of Informatics Problems of the National Academy of Sciences of Belarus / SWITCH, GLAN, PetaSolution / PSNC

Poznan Supercomputing and Networking Centre / CESNET – e-Infrastructure for science, research and

education / AMRES – Academic network Serbia / JSCC RAS – Joint Supercomputer Centre of the Russian

Academy of Science / URAN / ETH Zurich / IBM Research / RENAM / Belnet / GRNET

Signees can be divided into three categories:

 National Research and Education network – NREN (8)

 Research organisation and Universities (10)

 Others – Research organisation and NRENs (2)

Affiliation: (N)RENs working on

 Research: Cloud computing research, computer science, computational chemistry, supercomputing and

HPC, Life=science engineering, mathematics, physics, network and system software development and

research, Earth science, art science, and security.

 Operations: Operations is also concentrating on its own deployment of cloud services, fulfilment of

national roadmaps focusing (academic) ICTs as the whole academic community. Mostly IaaS, PaaS and

SaaS as cloud services will be provided, operated and supported on (off) the campus networks.

 Others: NRENs are acting as cloud providers for constituents. They offer IaaS in two flavours, elastic

one, addressed to the end-users (researchers, students, staff etc.) as Virtual Private Server (VPS) and

one tailored to NOCs and project’s persistent needs. Further NRENs act as a cloud operator for the R&E

community.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

37

Maturity working on clouds:

Achieving maturity on cloud computing can be summarised as Building Cloud Competences (BCC), instantiated

by national/international projects/activities, trials and prototyping, standard work, and own deployments at

institution level.

SDN/NFV Level: Interpretation:

 14% of all responses have an EXPERT level of SDN/NFV knowledge (3)

 29% of all responses have a MATURE level of knowledge (6)

 19% of all responses have a MODERATE level of knowledge (4)

 10% of all responses have KNOWLEDGE on SDN/NFV (2)

 24% of all responses have HEARD about SDN/NFV (5)

Segmentation into categories (beginners, intermediate and advanced) on SDN, and NFV shows that 43% of all

responses command ADVANCED and MATURE levels of knowledge. It is assumed that this population is actually

working on research topics in projects, trials, and prototyping to increase their maturity on cloud computing, BCC.

From the rest (57%), 34% identify as beginners (KNOWLEDGE, HEARD) or have knowledge on basic levels,

which means starting with this topic or have plans for future steps, but (probably) do not really know how to cope

with SDN/NFV. The remaining 23% is in between the first two groups, and has moderate levels of expertise.

Thus it is assumed that 66% (EXPERT, MATURE) of the signees would be familiar with SDN and NFV as

researchers and engineers. This allows contact to be maintained with this group is at the advanced level, and

are able to integrate their expertise in future plans. Furthermore, beginners need coaching, education and support

on SDN and NFV by the GÉANT community – community-building is a key subject.

Section B: Regarding Cloud Applications, information is collected about consuming and/or promoting of cloud

service models or plans of (new) additional cloud services during the next 12 months, and identifying the

software frameworks that will support the delivery/orchestration process.

One of the key questions of this paragraph is about which kind of cloud services (models) respondents would

offer, and/or consume. The feedback is as expected: 57% of all responses provide offerings or consume cloud

services, such as IaaS and PaaS. Only 10% have offerings/services on SaaS, and 13% are providing/consuming

other services. Other services are mostly a mix, e.g. VMs with Linux or Windows OSes, firewalling, separate

subnet for research projects, big data services or providing/consuming individual services locally or on specific

HPCaaS. In conclusion, however, the main focus is on IaaS and PaaS, which should be introduced globally when

providing offering cloud services within GÉANT.

The question about existing cloud service portfolios and future plans of new services during the next 12 months

shows a number of trends:

 Extension/redesign of existing cloud service portfolios such as SaaS, PaaS, an HPCaaS.

 The idea of planning the role of support unit for researchers. The aim here is to support institutions by

optimising, consulting, migration provisioning and administration.

 Offering special/individual services to the end-users – for example, having a GTS in place for video

streaming and in-network caching experiments.

 Having scientific software as a service is in a wider scope – for example, licencing of scientific software.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

38

 Cloud services on demand, e.g. VMs and GUIs. This implies orchestration, aggregation and distribution

of resources is part of a wider scope, therefore ongoing migration to OpenStack as an orchestrator is in

focus.

 To provide strong cloud services, e.g. ownCloud (the academic Dropbox) [OWNCLOUD] or IaaS on

OpenNebula [OPENNEBULA].

 Having plans to implement or build up clouds on commercial products in the next two years.

 Thinking about a disaster recovery concept by providing Backup as a Service.

 Providing Cloud Storage to the GÉANT community, e.g. Synnefo Pythos [SYNNEFOPYTHOS].

 Having a concept of a Cloud Federation, IaaS cloud and Satellite image processing.

Offerings, including plans for cloud services, as shown, have a very wide scope, including: infrastructure, software,

platform, orchestration of complex infrastructures, disaster recovery capabilities and looking for federations on

cloud computing, which implies trust services supported by trustworthy organisations within GÉANT.

Section C: From a network perspective, there were questions related to experience and scenarios in inter-cloud

computing, network configuration statically/dynamically, degree of virtualisation thus planning, using SDN/NFV

frameworks also requirements to the GÉANT network providing a cloud architecture, which helped to assess

Cloud Computing Network Readiness into GÉANT.

Respondents were first asked about accessing cloud services in general. Most respondents use commodity

Internet as well as dedicated connection. Users of university campuses and users within NRENs mostly use a

dedicated connection, users outside the campus network use commodity Internet, in some cases with VPN.

Usually there are usually no significant limitations with cloud access. Limited bandwidth was noted in 20% of

answers, one NREN has the problem with insufficient IPv4 address space and one with missing cloud-based

applications for specific use.

The next question was focused on details from inter-cloud computing (federation of infrastructures).

Approximately 60% of respondents have the experience with inter-cloud computing. Mentioned was multi-site

OpenStack deployment, BonFIRE facility (several testbeds connected through VPN), OCX and MS Azure (self-

developed control software). Special section was dedicated to monitoring the network, where NRENs have many

different needs. Most important seems to be a monitoring of network utilisation per subjects (user / service / VM),

but auditing other resources is also needed – VMs lifecycle, services status, security monitoring and others.

Many NRENs are connecting multiple sites and shares resources between them. Technologies like NFS storage

(mirroring, sharing), cluster database or computing power are common. Two specific solutions were mentioned:

FedCloud and Percona cluster.

As the SDN is still not very familiar, about 80% of respondents have statically configured network, mostly because

it is simple, stable and proven solution. 20% use both statically and dynamically configured network. Dynamically

configured in experimental cases or if interfaces and paths are automatically setup by cloud manager. For

dynamic configuration, classic approach as VLANs and VPNs was mentioned, but also some more advanced

technology like GÉANT BoD, VirtualWall, OpenStack Neutron (Open vSwitch with ML2 plugin).

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

39

To ensure traffic isolation between tenants, NRENs still mostly use VLAN technology. Exact results are: 75%

VLAN, 15% VXLAN, 15% GRE, some of NRENs use also technologies like MAC address space separation,

proxy ARP or MPLS. As tools for configuration are used OpenStack Neutron, ML2, OVS, FlowVisor, Cisco Boxes

and OpenNaaS/OpenVirteX above Floodlight.

The QoS requirements were thought to be an important question, but about 50% of respondents don't have any

specific requirements. In some cases, the guaranteed bandwidth is needed.

It was of interest to see how far the NRENs were with SDN implementation in their networks. Most of the

respondents are planning/considering experimental operation of SDN services based on the some of the

OpenSource implementation: 30% are waiting for SND implementation in routers and other network devices or

taking SDN capabilities into account while making network equipment upgrades.

With SDN support comes SDN apps: more than 60% of respondents are currently developing or planning to

develop apps for OpenStack or OCF, but the rest of the respondents do not see the practical usage of SDN apps.

No one currently allows users to deploy their own apps, one respondent is considering the possibility and one

allows users’ SDN Apps for testing purposes only (not for deployment).

So at the end of the section, how should the GÉANT network support cloud computing? Mainly by stable and

high-quality IP network, but also in terms of SDN availability in the GÉANT network, by providing an advanced

networking services and supporting GTS. Central cloud services brokerage is a good approach. Such services

may leverage efforts to host cloud services within different NRENs' networks or may integrate national cloud

initiatives under a collaborative umbrella.

Section D: The paragraph “Additional requirements to the network” does include more detailed, specific

questions, not introduced in Section B, and C, focusing on network provision of cloud services. Concentrating on

SDN, NFV and vendor-agnostic approaches, it is also important to ask for specs on (network) applications, e.g.

SDNapps or virtualisation on network functions, etc.

Questions tried to gather impressions on how cloud services are currently provisioned, as well as for the models

for their deployment including network configuration.

Most NRENs would prefer hybrid clouds, in which public and private cloud resources are interconnected to

enhance the value of cloud services using, for instance, private clouds for storing sensitive data, and public ones

to allow offloading peak demands. NRENs, however, would like to see unified mechanisms for operating both

and its integration should be simple for them to achieve. It is important, however, that NRENs have cloud services

as part of their portfolios, since users are already demanding them.

The processes for configuring and provisioning services are not yet fully automated. Some NRENs use platforms

that provide a certain level of automation, such as Okeanos or Openstack, but as a common note, all NRENs

see automation as a much-desired feature.

Of utmost importance is security, ranging from end-host/OS/application to data and personal information

protection, to network security, etc. Among the security features that would need to be supported are handling

compromised customer domains, prevention of DDoS attacks, ensuring information privacy (not compromising

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

40

user’s data), prevent misuse of VMs, isolation, prevent VM hacking or general VM management to detect

outdated, forgotten and vulnerable VMs. Current approaches include a variety of models, from distributed or

centralised firewalling, network traffic filtering and NetFlow sampled or unsampled.

As for the network side of cloud services, NRENs use different topology models such as QoS equidistant core

IaaS networks, separated I/O cloud networks or redundant networks. Topology and network technologies,

however, usually depend on the service (e.g. mobile or optical for HPC). In general, they just require a well-

connected and robust topology using their own network, GÉANT, and others such as Internet2, as well as

commercial networks (even if they see that in GÉANT it is difficult to openly peer with commercial networks). In

general, these technologies currently use traditional routing protocols (OSPF, BGP, IS-IS) and VLAN-based

virtual networks to interconnect VMs.

Regarding IPv6, it is already supported in the majority of the NRENs networks as a dual-stack and IPv6 is

encouraged also for end users. This support is still not considered through SDN, but SDN features should be IP-

version agnostic.

NRENs see Open Source platforms (such as Open Daylight for network and Openstack for cloud) of special

interest for the research community as in general they provide easy development and deployment. However,

there is concern about security aspects that are not mature in open source solutions. Besides, integration with

closed systems can also be achieved but through open APIs.

Finally, NRENs have been asked their views on a possible collaboration among themselves to provide cloud

services. They point out that the first step would be to exchange knowledge and align requirements, followed by

a cost-benefit analysis regarding the different possible models (brokerage, own clouds, federation). Federated is

commonly seen as a possibility but some aspects would need to be well thought through, such as mechanisms

for federation of credentials, for instance, eduGAIN for ubiquitous access, AAI integration, interoperability of

resources, to have a common services portfolio and manage and plan capacity and SLAs. However, there are

concerns that a fully federated environment might be difficult and complex to implement.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

41

Appendix B Overview of Business Solutions for
SDN Monitoring

In order to be able to analyse traffic from a variety of different applications and have a number of tools in place,

it is typically necessary to not only use monitoring or mirroring ports on switches that can be connected to a

monitoring network, but to also incorporate additional network optical or copper taps at different places in the

network topology. An SDN controller can then be used to create an out-of-band, overlay monitoring network

where traffic collected from these taps and monitoring ports is directed to the appropriate tool ports [HOG-2013].

This way the SDN approach can actually serve as a solution for creating a packet monitoring system.

Big Switch Networks offers such an SDN-based monitoring architecture, where monitoring applications called

Big Taps are used to collect and filter traffic at any place in the network and can be programmed to send the

filtered traffic to network monitoring or security tools. All configuration and programming of taps is prepared and

carried out using the Big Tap Controller Software [BIG-2013].

ExtraHop-Arista also offers a solution for SDN monitoring, which provides a special focus on real-time

performance and application workloads via the ExtraHop API and ExtraHop’s Context and Correlation Engine

(CCE) workloads of specific hosts, applications, clusters, storage and databases, etc. can be monitored [EXT-

2013].

Microsoft also offers a tap-based solution that uses an OpenFlow Network to monitor traffic. DEMon (Distributed

Ethernet Monitoring) works with low-cost switches and an OpenFlow controller that are employed for traffic

analysis and monitoring in its data centres [MCG-2013].

Cisco also offers an SDN-based approach, which uses OpenFlow along with the Cisco eXtensible Network

Controller (XNC) and an XNC Monitor Manager Solution [CIS-2014a]. The Monitor Manager aggregates data

from network taps and is capable of linking monitoring devices directly to the points in the network fabric that are

responsible for managing the monitored packets.

As creating overlay monitoring networks with SDN offers a lot of flexibility for network monitoring and traffic

analysis, it must be expected that SDN-based solutions will continue to play an important role in network

measurements.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

42

Appendix C OpenFlow Vendor Overview: Optional
OpenFlow features and Features for
Monitoring and Statistics

HP ProCurve 5900 OpenFlow switch

The HP ProCurve 5900 OpenFlow switch works according to OpenFlow Specification 1.3.1 and the following

section will describe its features for monitoring and its capabilities to keep statistics. As an added quality, the

switch has the potential to not only be used as an OpenFlow switch as a whole, but also to have several OpenFlow

instances defined that can be used independently from one another and with different controllers in place. Each

such OpenFlow instance is associated with one or more VLANs, and the forwarding of packets only takes effect

in the VLANs associated with an instance. The OpenFlow switch is capable of supporting up to 64 controllers,

and 4096 different VLANs can be defined. It is possible to assign individual ports to these VLANs; a port forwards

packets for a VLAN only after it is assigned to the VLAN [HP-2013].

For monitoring and traffic analysis, the switch allows:

 Configuration of SNMPv1, SNMPv2 and SNMPv3 parameters, logging and notifications.

 Configuration of RMON (Remote Network Monitoring) as an extension to SNMP (the statistics group of

RMON samples traffic data for Ethernet interfaces and collects the data in the Ethernet statistics table

(ethernetStatsTable). The parameters include number of collisions, CRC, alignment errors, number of

undersize or oversize packets, number of broadcasts, number of multicasts, number of bytes received,

and number of packets received).

 Configuration of Network Quality Analyzer (NQA) for performance measurements and QoS evaluations

(for various operation types such as voice, path jitter, UDP jitter, etc.) and for threshold monitoring where

trap messages are sent to the network management station (NMS) when thresholds are exceeded or

violated.

 Configuration of ICMP echo operations to verify the reachability of a device.

 Configuration of port mirroring to copy packets that pass through an interface port to send them to a traffic

analysis device for further processing.

 Configuration of sFlow to collect interface counter and packet information; the sFlow agents sends UDP

datagrams to the sFlow collector where the data is analysed.

 Configuration of the Embedded Automation Architecture (EAA), which is a framework that allows the

definition of monitoring events and associated follow-up actions. When it comes to defining monitoring

policies, the following restrictions apply: monitoring policies can be defined for specific OpenFlow

instances, but each monitoring policy can only contain one monitoring process event.

 Configuration of the Network Configuration Protocol (NETCONF) that allows the collection of statistics

and provides filtering capabilities.

The following tables list switch features and capabilities, as well as features related to monitoring and the

collection of statistics.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

43

Feature Comment

Virtual switch Maximum number of OpenFlow instances that are supported on one physical
switch is 128.

Forward normal support Hybrid mode supported (both OpenFlow and normal processing).

Forward flood support Forward to an OpenFlow enabled physical port
ALL, CONTROLLER, NORMAL and FLOOD is supported.

Enqueue support Enqueue action is not supported.

Modify fields support OpenFlow flow table of type MAC-IP allows modifying destination MAC
address, modifying source MAC address, modifying the VLAN and specifying
the output port.

IP src/dst lookup for ARP Not supported.

STP support STP is supported.

Output to multiple ports
(multiple output actions)

Multiple output actions is with group table
Group table is capped to 32 per instance and capped to 1024 in total.

Multiple controllers
support

Is supported but not in the same VLAN/instance, i.e. the switch supports
OpenFlow instances with individual VLANs where each instance can have one
controller; can support up to 64 controllers in that way.

Emergency mode
behaviour

The switch is able to send information carrying ‘dying-gasp’ events in critical
events, such as power failure; switch also has connection interruption modes
that can be set to determine actions when connection to controller is lost: 1.
Secure mode (switch keeps forwarding traffic based on flow tables and does
not delete unexpired flow entries); 2. Standalone mode (switch performs
normal forwarding and flow entries are not deleted).

Number of flow entries Can be configured; at most 65535 flow entries can be used.

OF-CONFIG support OpenFlow Configuration support after reboot

Flow rate Traffic policing, generic traffic shaping and rate limiting is supported; rate limits
control the rate of inbound/outbound traffic and specify the maximum rate for
sending or receiving packets (including critical packets) of a physical interface.

Features for monitoring and statistics:

Feature Comment

Counters Interface-,OSPF-, MSDP message-, FSPF-, NQA reaction-, flow table-counters
are supported; Counters are maintained for each flow table, flow entry, port,
queue, group, group bucket, meter and meter band.

Maximum number of logs Maximum number depends on the logs.

Maximum number of
notifications

Supported maximum number depends on the notifications.

SNMP MIBs Supports SNMPv1, SNMPv2c and SNMPv3. MIBs support changing with
SNMP software versions.

Support for OpenFlow
statistics

port statistics, flow statistics, table statistics, group statistics.

Support for statistics
related message types

OFPT_FLOW_MOD, OFPT_PORT_MOD, OFPT_GROUP_MOD,
OFPT_METER_MOD

HP ProCurve 3500 OpenFlow switch

Feature Comment

Virtual switch Every VLAN can be used as its own instance with its own independent
OpenFlow configuration and controller.

Forward normal support Supported; normal non-OpenFlow VLANs can also be used at the same time
for normal traffic to be forwarded without OpenFlow management.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

44

Forward flood support Supported in software.

Enqueue support Not supported (HP QoS extensions are available).

Modify fields support Modify eth src/eth dst/ipv4 src/ipv4 dst/tcp srcport/tcp dstport are NOT
supported; modify ipv4 ToS is supported.

IP src/dst lookup for ARP IP src/IP dst fields are matched.

STP support OpenFlow is confined to the switch spanning tree and does not allow full
interaction with the switch spanning tree.

Output to multiple ports
(multiple output actions)

Supported and processed in switch software.

Multiple controllers
support

Supported with OF 1.3.

Emergency mode
behaviour

Emergency flow cache not supported.

Number of flow entries Group tables for multiple flow entries supported, total number of groups in
switch is 1024, total number of groups per OpenFlow instance is 32, 65535
VLAN entries.

OF-CONFIG support not supported

Flow rate Per-flow rate-limiting is possible, i.e. the rate of packets running through a
switch can be controlled. Per-flow rate-limiters associate an arbitrary number
of flows with a rate-limiter. Any number of flows can be mapped to a rate-limiter,
regardless of src/dst ports. The use of rate-limiters requires a version of ovs-
ofctl, which includes HP QoS extension.

Features for monitoring and statistics:

Feature Comment

Counters Per flow counters: received packets are maintained correctly; received bytes are
NOT maintained correctly; duration(sec) and duration(nsec) is maintained by
software.

Maximum number of logs Alert logs available for various alert types, event logs.

Maximum number of
notifications

Information not available.

SNMP MIBs Supported.

Support for OpenFlow
statistics

Full statistics are not available when a rule is executed in hardware (byte_count
will not be available, statistics are updated every 7 seconds); full statistics
available for flows switched in software; message statistics for OpenFlow
instances; port statistics per instance, group statistics, meter statistics.

Support for statistics
related message types

Filtering of display information is supported: filters for dest-ip, dest-mac, dest-
port, ip-protocol, ip-tos-bits, source-ip, source-mac, source-port, vlan-id, vlan-
priority.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

45

Extreme Networks Summit X460 switch

The Extreme Networks Summit X460 Switch uses ExtremeXOS 15.5, which supports the listed optional features

in the following way [EXT-2014]:

Feature Comment

Virtual switch No

Forward normal support Hybrid switch operation is possible, i.e. on the same switch standard non-
OpenFlow-enabled ports can coexist with OpenFlow enabled ports. The
OpenFlow functionality is enabled at the VLAN level, which means that all ports
that are assigned to that OpenFlow VLAN only process OpenFlow flows
associated with that OpenFlow based VLAN. Ports in other normal VLANs that
are not OpenFlow enabled process traffic like standard Ethernet ports. The
same port on a switch can support OpenFlow based as well as non-OpenFlow
based VLANs.

Forward flood support OpenFlow actions ‘Forward ALL’ and ‘Forward Flood’ are not implemented.

Enqueue support EXtremeXOS offers a simple enqueue action for forwarding a packet through a
queue attached to a port. The queue can be assigned a QoS profile for simple
QoS support with this mechanism. A controller may also query information and
statistics on such a QoS profile.

Modify fields support ExtremeXOS from version 15.4 and higher allows VLAN ID editing functions
(add, strip, modify) and also allows source and destination MAC modify actions.

IP src/dst lookup for ARP There is conditional support for IPv4 source address and IPv4 destination
address matching in ARP packets. It is currently being investigated by the
company [EXT-2014, p. 49].

STP support Spanning Tree (802.1d domains); the maximum number of 802.1d domains per
port is 1. The maximum number of STP protected VLANs is 600.

Output to multiple ports
(multiple output actions)

In EXtremeXOS flow table entries forward a packet to one physical port.
OpenFlow actions ‘Forward ALL’ and ‘Forward Flood’ are not implemented.

Multiple controllers
support

Multiple OpenFlow controllers are supported and can be configured to increase
availability. It is possible to create controller clusters to be represented by a
single IP address where the switch treats this cluster as a single controller, but
it is also possible to assign multiple IP addresses to a controller cluster. The
switch then connects to the primary and secondary controller at the same time
and allows controllers to manage failover, i.e. both controllers are active and
provide controller redundancy.

Emergency mode
behaviour

There is no emergency flow table available; ExtremeXOS supports only one
physical table and ingress table. ExtremeXOS offers an ‘open fail’ mode where
existing flows are kept after connectivity to the controller is lost (this is in contrast
to the ‘secure-fail’ of OpenFlow 1.0 where all flows are removed when
connectivity to the controller is lost).

Number of flow entries The OpenFlow table size is limited by the number of ACLs that the switch
supports (platformdependent table sizes). The Summit X460 supports 2048
ingress and 256 egress Access lists (meters). The maximum number of MAC
addresses in the FDB is 32768; the maximum number of FDB (blackhole
entries) is 32000 [EXT-2014a].

OF-CONFIG support No

Flow rate The rate-limit for Packet-in packets sent from the switch to the controller is set
to 1000 packets per second as default with a range that can be set from 100 to
2147483647. A burst-size can also be set in connection with rate-limit.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

46

Features for monitoring and statistics

Feature Comment

Counters The L2 switching hardware does not count packets or bytes for each entry,
however the single wide-key ACL per OpenFlow VLAN provides summary
counts. Counters are maintained per-table, per-flow, and per-queue [EXT-
2014].

Maximum number of logs 16 logs can be created at a time.

Maximum number of
notifications

A maximum number of 16000 notifications can be logged.

SNMP MIBs Y.1731 Compliant Performance Monitoring SNMP MIBs.

Juniper MX80/240 OpenFlow switches

Juniper offers OpenFlow version 1.0 support for switches of their EX and MX series running Junos OS. For each

Junos OS release for OpenFlow support a certain matching OpenFlow software package must be installed [JUN-

2014a]. Currently Juniper offers OpenFlow support for their EX4550 and EX9200 Ethernet switches as well as

for their MX80, MX240, MX480 and MX960 routers.

Feature Comment

Virtual switch Only one virtual switch is supported

Forward normal support OFPP_NORMAL is supported according to specification

Hybrid operation (having traffic on the same port in two VLANs – one processed
by OpenFlow and other one sent to the traditional forwarding path) is supported
according to specification.

Forward flood support OpenFlow actions ‘OFPP_FLOOD’ and ‘OFPP_ALL’ are supported.

OFPP_OUTPUT, OFPP_IN_PORT and OFPP_CONTROLLER are not
supported.

Enqueue support OFPAT_ENQUEUE is not supported

Match fields support dl_src, dl_dst, dl_vlan, dl_vlan_pcp, dl_type, nw_tos, nw_proto, nw_src,
nw_dst, tp_src, tp_dst are supported.

OFPC_ARP_MATCH_IP is not supported

Modify fields support Only OFPAT_SET_VLAN_ID, OFPAT_STRIP_VLAN are supported

Other fields cannot be set.

IP src/dst lookup for ARP nw_proto (IP Protocol or lower 8 bits of ARP opcode) is supported.

OFPC_ARP_MATCH_IP is not supported.

STP support Not supported.

Output to multiple ports
(multiple output actions)

No documentation found.

Multiple controllers
support

One active OpenFlow controller is supported on each virtual switch (only one
virtual switch can be created).

Emergency mode
behaviour

Is not supported; if the switch loses connection to the controller then flow entries
are deleted.

Number of flow entries Each OpenFlow interface can have one or more flow entries.

OF-CONFIG support Not supported.

Flow rate No documentation found.

Number of tables 1

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

47

Features for monitoring and statistics

Feature Comment

Counters Number of flows, number of packets, number of groups, number of buckets,
number of packets, number of bytes

Maximum number of logs Information not available

Maximum number of
notifications

Information not available

SNMP MIBs information not available

Support for OpenFlow
statistics

Junos OS on MX Series Switches supports the following OF statistics:
OFPST_DESC, OFPST_FLOW, OFPST_TABLE, OFPST_AGGREGATE,
OFPST_PORT, OFPST_QUEUE

Support for statistics
related message types

OFPC_FLOW_STATS, OFPC_TABLE_STATS, OFPC_PORT_STATS,
OFPC_QUEUE_STATS, OFPT_PORT_STATUS, OFPT_STATS_REQUEST,
OFPT_STATS_REPLY

OVS extensions

OAM is still an immature area in SDN. There is not a broadly accepted or adopted solution yet. However, in a

production environment link failure detection and reroute is an essential element of a network. In and OpenFlow

based network the offered solutions are limited. The OpenFlow protocol supports the OFPPC_PORT_DOWN

and OFPPS_LINK_DOWN messages. When a switch detects that a port or directly connected link is down, it can

signal this event to the controller. The controller can act and e.g. insert flow rules to route around the failure. But

this is a slow process. In production networks a faster recovery is often required.

OpenFlow 1.3 also supports the group table:

Group Identifier Group Type Counters Action Buckets

This table supports four types:

 (required) ALL: execute all buckets (multicast)

 (optional) SELECT: execute 1 bucket (load balancing)

 (required) INDIRECT: execute only bucket (IP next hop)

 (optional) FAST FAILOVER: execute 1st live bucket

The “FAST FAILOVER” type can be used for rerouting. When there are multiple paths provisioned between two

OpenFlow switches, the group table can be used to send traffic on a working path. On the sending switch, the

group table uses the outgoing ports that are used for paths to the other switch as “action bucket”. A packet that

needs to be sent to the other switch is sent on a port that is “live” (working). When this port goes down, another

port that is working is used to send the traffic. This provides fast failover, but lacks detection of path failures. This

is illustrated in the figure below.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

48

Figure C.1: Illustration of fast failover without path failure detection

When there is a link outage at X2, port 2 of switch A will go DOWN. This can be detected by switch A and traffic

can be switched to another port (port 1 in this case). However, when there is a link outage at X1, port 1 of switch

A remains UP, and this failure cannot be detected by switch A. A mechanism for path failure detection is required.

A protocol that sends periodic hello packets is needed, such as bidirectional Forwarding Detection, RFC 5880

(BFD) or Ethernet OAM (IEEE 802.1ag). Ethernet OAM support is currently being worked on in Open vSwitch.

Ethernet OAM (IEEE 802.1ag) uses Ethernet frames for OAM functionality. It uses an Ethernet type of 0x8902

and supports three message types:

 Continuity Check Messages (CCM)

 Link Trace Message (LTM/LTR)

 Loopback Message (LBM/LBR)

The link trace and loopback messages are similar to IP traceroute and IP ping, but instead of working with IP

addresses, Ethernet OAM works with MAC addresses. Each Ethernet interface that supports 802.1ag has a MAC

address that can be used for OAM. For example, a loopback messages (LBM) can be sent to the MAC address

of an Ethernet switch port and if that switch port is reachable, it sends back a loopback reply message (LBR).

The Continuity Check Messages (CCMs) are used to periodically send hello messages on Ethernet broadcast

domains and other Ethernet switches use these to monitor reachability of other switches.

802.1ag also has the concept of maintenance domains, maintenance associations and maintenance levels.

These are used to build hierarchical OAM domains where there is a separation between monitoring an individual

link, an end to end path, a regions within a service provider, the link between customer and service provider, etc.

Open vSwitch (OVS) is a software switch that supports OpenFlow. It is part of the standard Linux kernel and is

also used in some hardware OpenFlow switches, like those from Pica8. OVS has limited support for 802.1ag. It

only implements CCM, and the maintenance names and levels are fixed. This makes it unsuitable for situations

where OVS switches are connected via paths through traditional switches and path failures need to be detected

by the OVS switches. Ronald van der Pol has implemented the 802.1ag protocol as Open Source software

(https://svn.surfnet.nl/trac/dot1ag-utils/wiki) and this code is being merged in the OVS OAM code. The

https://svn.surfnet.nl/trac/dot1ag-utils/wiki

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

49

interoperation with traditional switches will be tested on the SURFnet OpenFlow testbed, that uses OVS based

Pica8 switches with Ethernet tunnels over traditional Ciena Ethernet switches.

Develop the Authentication and Authorisation Infrastructure (AAI) services to cope with the challenges of end-
user mobility.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

50

Appendix D SDN for Clouds, Testbeds and Campus
Networks

D.1 What can the network do for clouds?

Cloud Computing is a widely used distributed concept for provisioning services to the end-users on commercial

also academic (network-) platforms. The National Institute of Standards and Technology (NIST)1 identifies the

different deployment models of public-, private- and hybrid clouds, as well as the different service models with

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) being the

most widely recognised. [NIST] Service/deployment models of clouds raise the question “What can the network

do for clouds?” Software-Defined Networking (SDN) driven by the ONF [ONF] as a Standard Development

Organization (SDO) can be exploited to meet specialised requirements.

JRA2T1 ran a GÉANT Symposium session in 2013, addressing the cloud-network interoperability based on SDN.

During the session, cloud provisioning requirements were discussed, such as the dynamicity inherent to cloud

services provisioning – not only in creating and modifying virtual servers, but also in moving and interconnecting

with them. Static provisioning for clouds works, but will not scale to the implementation of dynamicity requirements

at large. Another requirement is that of multi-tenancy. Solutions such as VLANs, VXLANs or NVGRE do not fully

address fast dynamic changes and extended cloud-network interoperability, such as that which can be achieved

by exploiting SDN. Control over the network traffic flows also provides more options for monitoring. Network

monitoring data becomes relevant and useful for the cloud.

Regarding control-plane integration, a lightweight approach seems to be optimal. Resources and capabilities

should be advertised between both the cloud and the network infrastructures, on an as-needed basis. Overall,

the adoption/design/adaptation of stable, production-level specialised controllers for different use

cases/applications is required. A closer look at cloud networking requirements and potential solutions by SDN is

in order.

As a follow-up to the introductory session at the Symposium, JRA2 T1 ran a network requirements’ survey

addressing the NREN community with clouds, SDN and NFV topics in order to estimate the innovation of SDN

on “real” use cases. Details about this survey and outcomes are provided in Appendix A.

1 [NIST]

Public Cloud: The cloud infrastructure is provisioned for open use by the general public. It may be owned, managed, and operated by a

business, academic, or government organization, or some combination of them. It exists on the premises of the cloud provider

Private Cloud: The cloud infrastructure is provisioned for exclusive use by a single organization comprising multiple consumers (e.g.,

business units). It may be owned, managed, and operated by the organization, a third party, or some combination of them, and it may exist

on or off premises

Hypbrid Cloud: The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private, community, or public) that

remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability (e.g.,

cloud bursting for load balancing between clouds).

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

51

D.2 Multi-domain SDN Technologies for Cloud Computing and

Distributed Testbeds

D.2.1 Slice-oriented vs Connection-Oriented Multi-Domain SDN

The following sections describe the research effort in terms of approach to multi-domain, SDN-based

architectures. The Multi-Domain SDN research activity comprises a set of possibilities that has driven this work

group to split the study into two, main branches.

The first approach focused on the pure aspects of multi-domain, SDN connectivity services, aiming to enable to

end-users with the creation of dedicated circuits interconnecting at least two points in the multi-domain

environment, involving SDN/OpenFlow domains. Therefore, this working group has developed the so-called

“Multi-domain, Connection-Oriented Approach”.

The other identified approach aims to provide end-users with sets of federated resources belonging to different

domains, so that they can run their experiments (in the case of research institutions end-users), deploy software

applications (in the case of software developers and SaaS providers) or simply provide resource infrastructure to

their users (as it is the case of IaaS providers) in a multi-domain environment. This alternative will be discussed

as the “Multi-domain, Slice-Connection Approach”.

Broadly speaking, the Connection-Oriented Approach constitutes a particular case of the Slice-Oriented

Approach. This is evident, since the Slice-Oriented Approach implies creating slices of resources, as well as

establishing the connection between the slices allocated in different domains, i.e. the objective of the Connection-

Oriented Approach. Nevertheless, key requirements have forced the research effort to split into these two

approaches. For example, one key difference between approaches is related to the overall multi-domain

performance. In the case of the Slice-Oriented Approach, it is necessary to keep track of the overall multi-domain

network status to ensure that slices are created at the most convenient domains. Thus, the Slice-Oriented

Approach proposes an EXTERNAL entity that determines and configures the flow rules, based on previous

knowledge of the flow-spaces. In the Connection-Oriented scenario, there is no need to keep control over the

flows in a multi-domain network; there is only the need to setup the E2E path based on the SDN controller

configuration flows within the SDN resources. The connection approach is a particular case in which the flow-

spaces configuration and control is delegated to the INTERNAL SDN controller.

Both approaches will also address the limitations and challenges while integrating legacy (non-SDN) domains

into the solution, since this represents a typical situation in common current multi-domain scenarios.

Main objectives of the multi-domain SDN analysis and study comprise:

 Definition of building blocks of SDN Slice-Oriented and Connection-Oriented architectures.

 To design a generic architecture and provide description of the functionality.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

52

 To identify type of use cases for both approaches.

 To provide support and guidance to the SA2 activity in order to facilitate the migration of the multi-domain

functionality to the GTS.

D.2.2 Use Cases

D.2.2.1 Extension of the BoD service to OpenFlow-based campus networks

In order to satisfy the increasing demand of high-capacity and highly reliable connections, most NRENs offer

point-to-point connectivity services to their clients [ESNET] [INTERNET2], including GÉANT [GÉANT]. A vast

range of technologies are used to provide this type of services. Researchers trying to conduct a global experiment

may need to establish a connection between two distant hosts not directly connected through their local NREN.

In these cases, the circuit has to be established across several domains, which requires the use of multi-domain

technologies.

Scenario

Considering a generic case in which the SDN campus network is connected to an NREN, which may or may not

be SDN based, a user may want to establish a connection between a campus host and a remote host through

the local NREN. Taking into consideration that at least two different network domains are involved, a multi-domain

technology must be used to establish the end-to-end path. Figure D.2: depicts the scenario.

Figure D.2: Extension of the BoD service to OpenFlow-based campus networks

The actors involved in this scenario include:

 User: Entity that wants to establish a connection between two hosts of different domains.

 Network administrator: Entity in charge of the administration, management, control and operation of the

network.

 Network provider: Entity that provides the connectivity service to the user.

First, the different network providers involved must agree on the type of service to be provided to users. They

can agree some SDAs (Service Delivery Agreement), for example, provide L2-VLAN circuits with certain

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

53

guaranteed bandwidth. Second, network administrators must configure the network to fulfil the specific

requirements of the service that it is going to be provided. Once the service provided to users is well defined,

users can request connections to their local network provider. Since the connection must be established through

several domains, the network provider must request the connection establishment in the adjacent domains on

behalf of the user. Once the connection request has been addressed in all the domains involved, the user will

obtain the requested service.

Non-SDN-Based NRENs

When talking about the integration of OpenFlow with multi-domain technologies, its great flexibility and granularity

can arise some compatibility problems. To overcome this possible failure situation, it is essential to have a

previous negotiation between the network providers to agree on a common supported service type.

Figure D.3 depicts a particular case where only two domains are involved, a SDN/OpenFlow-based campus

network and a non-SDN/OpenFlow NREN. In this case, the network providers of both domains have agreed on

providing circuits defined by a VLAN tag, meaning that the user will have a connection established from source

to destiny where a specific VLAN tag is used. In Figure D.3, two different connections are depicted, the purple

and the red one. As can be seen, each of the connection uses a different VLAN tag, identified by the green and

grey paths. Note that if the service is defined by VLAN tags, the users will have to tag the traffic before it enters

the network. At the moment of forwarding the traffic, each of the domains will forward the traffic using the

mechanism of their choice. Considering that the solution must be technology agnostic, the edge-switches of each

domain must be able to adapt the incoming traffic so that it reaches the destination unchanged.

Figure D.3: OpenFlow campus network and non-OpenFlow NREN scenario

 SDN-Based NRENs

In this scenario, the NREN is an SDN domain, specifically, an OpenFlow-based domain. As a consequence,

because all the domains involve OpenFlow, one of the most significant problems when dealing with multi-domain

approaches disappears: the compatibility between technologies. In this case, it is possible to establish a

connection across all the domains involved, taking advantage of the flexibility and granularity of OpenFlow.

However, there will still be differences between the OpenFlow protocol versions, which must be taken into

consideration.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

54

FigureD.4 depicts a particular case where only two OpenFlow domains are involved. In this case, the network

providers of both domains have agreed to provide circuits defined by a combination of fields from L2 to L4. In

FigureD.4, two different connections are depicted, the purple and the red one. One of the main advantages of

using OpenFlow is that services can be identified without tagging the traffic. This way, users are not required to

do any modifications to their traffic before it enters the network.

FigureD.4: OpenFlow campus network and OpenFlow NREN scenario

Requirements

Functional Requirements

 Users should be able to request a service through their local network provider.

 Users should be able to obtain end-to-end connectivity services with guaranteed QoS.

 Network providers should be able to negotiate the service characteristics with the network providers of

the remaining domains.

 Network should be automatically configured whenever possible.

 Services should be automatically provided when requested by users.

 Services should only be provided after an authentication and authorisation process.

 The required mechanisms needed to guarantee that a service has been successfully removed should be

provided.

Non-functional Requirements

 The solution must be unique and technology agnostic, valid for any combination of SDN/OpenFlow

domains and non-SDN/OpenFlow domains.

 It should make the most out of SDN/OpenFlow granularity and flexibility.

D.2.2.2 Slice-oriented multi-domain SDN use case: Collaborative research experimentation

Overall Description

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

55

A group of three research institutions aims to run a collaborative experiment that will result in a heavy workload

i.e. significant amount of resources on their DC facilities, the real-time interchange of big-data and consequently,

tight multi-domain connectivity requirements across different domains to connect research institutions based on

SDN technology. Computing and storage resources can be either owned by research institutions or the NRENs

providing connectivity to the GÉANT backbone and to other research institutions. The research institutions’

requirement is for a testbed (network resources and connectivity between resources) besides computing and

storage resources for experimentation purposes.

Scenario

Figure D.5 depicts the use case: three research institutions are connected to their respective NRENs. Research

Institutions 2 and 3 own their DC resources to run the collaborative experiments (i.e. they host their own storage

and computation resources). The other possibility is for the NREN to act as the connectivity service provider as

well as an IaaS provider, providing Research Institution 1 with the required DC resources. In this use case, DC

facilities are also based on SDN technology (OVS switches) so that E2E multi-domain connectivity and service

provisioning services should also comprise hosting facilities. Apart from SDN domains, the scenario also shows

a non-SDN domain (MPLS technology instead) that should be integrated in the E2E connectivity service.

Figure D.5: Multi-domain SDN scenario overview for collaborative research experiments.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

56

Actors and Associated Roles

Research Institutions

 Service Consumers

 Physical Infrastructure (IT) Providers. (In the case of research institutions 2 and 3).

 Virtual Infrastructure (IT) Providers. (In the case of research institutions 2 and 3).

NRENs and MPLS domain NOC

 Physical Infrastructure (Network and IT) Providers.

 Virtual Infrastructure (Network and IT) Providers. (In the case of research institution 1).

 Virtual Operators (Network and IT). (In the case of research institution 1).

GÉANT NoC

 Physical Infrastructure (Network) Providers.

 Virtual Infrastructure (Network) Providers.

 Virtual Operators (Network).

Functional Requirements

Service Level Requirements

Name Requirement Description

GÉANT provisioning services On-demand and/or automated deployment and provisioning of

customisable GÉANT connectivity services. It should be possible to specify

BW allocation to ensure proper QoS to support data interchange among the

different research institutions.

Elasticity Self-service, on-demand and/or automated scale-up and scale-down

elasticity features.

Privacy, service security Experimental data must be guaranteed privacy and security, without which

the resources and connectivity among them will not be reliable.

Seamless Network Resources

Provisioning across NRENs

NRENs should allocate network resources allowing dynamic provisioning

and configuration to react upon unexpected QoS degradation.

Network Ctrl and Mngmt

interfaces

It will be required to enable interfaces for the management of the

connectivity service across the E2E path. The interfaces should allow the

configuration of network resources and virtual appliances, independently of

other services.

DC management platform and

interfaces

Due to the SDN nature of DC facilities, a Cloud management platform and

the corresponding interfaces must be adopted to (i) be managed by a Cloud

administrator and (ii) interact with the network connectivity service.

OpenStack constitutes a DC platform example.

Multi-tenant isolation Each online instance deployed in the E2E path should be isolated from the

rest of the workloads, in terms of data isolation, management isolation, and

performance.

Support of Big Data The experiment may make use of Big Data. Big Data should be supported

within the DCs hosting the research facilities, since it has an impact on

capacity, latency, access, security, cost and flexibility.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

57

Control Plane Requirements

Name Requirement Description

Automated provisioning of

intra-domains connectivity

Every domain involved in the use case must provide mechanisms for an

automated intra-domain configuration to enable CRUD connectivity

services on-demand (triggered by external requests). The same applies to

intra-DC configuration regarding the facilities involved in the service.

Data Centre Network (DCN)

resource-usage optimisation

It is required that the control plane solution provides the mechanisms to

support intra-DC connectivity services compliant with a variety of operator-

level constraints, including load-balancing strategies, energy efficiency,

paths with minimum cost, etc.

Programmable APIs Main connectivity and resource provisioning configuration options offered

by the control plane must be exported through programmable APIs (e.g.

based on the REST paradigms), with different levels of capabilities

depending on authorisation profiles. These APIs should allow exposing

some (limited) functionality directly to the users and enable an easy

integration with the overall DC control and management platform.

Network service resilience The network and resources provisioning service across SDN domains,

should detect network failures and support service restoration procedures

or the possibility to trigger asynchronous failure alerts to notify upper layers

(e.g. to the management/orchestration level) to enable recovery.

Easy interoperability with

existing cloud management

platforms.

Easy integration with Cloud platforms is fundamental to ensure E2E

connectivity and provisioning of resources. Thus, the solution control plane

should include mechanisms (e.g. APIs based on the REST concept and

HTTP protocol) to enable an easy integration with existing orchestration

systems and cloud management platforms from where the hosting

resources are provided.

Integration with non-SDN

connectivity services

The control plane should also incorporate mechanisms to interact with

legacy non-SDN domains while providing E2E connectivity and resources.

Virtualization and abstraction Resource sharing across domains is fundamental to provide E2E

connectivity services and resources in an efficient and scalable way. Thus,

resource virtualisation and abstraction procedures are fundamental to

achieve this requirement.

Control-plane scalability Computation and storage resources (in terms of servers and devices to be

managed) as well as the expected huge number of traffic flows among

servers should not affect control plane operations.

Scheduled network

connectivity support

It is necessary to support of scheduled connectivity between intra-DC

resources or in support of connectivity among resources located in different

DCs. This is key for the success of the use case. Suitable synchronization

procedures must be provided to coordinate the enforcement of the overall

scheduled actions across the different DC resources.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

58

Management Plane and Orchestration Requirements

Name Requirement Description

Network resources

management

Network equipment management, maintenance, administration,

configuration, and performance monitoring.

Network management Provisioning and management of network paths and circuits. Network paths

must enable setting, monitoring, and enforcing the QoS and QoE, such as

bandwidth, latency, amount of redundant paths, etc.

E2E service management Provisioning and maintenance the of the E2E connectivity network forcing the

traffic through the service enforcement points (appliances), elasticity of the

network and load balancing between the service instances.

Inter-domain topology

awareness

Topology abstraction awareness is fundamental to be able to properly

manage and provide with resources and E2E connectivity service in an

optimised way.

Virtualization management. Virtualisation management of resources enables resource slicing and

provisioning in this multi-domain, SDN-based use case.

Resources planning (tool) Prior to network and DC resources provisioning, resource reservations at the

network level should be planned and automatically updated to guarantee

resource availability and optimise the global DCN utilisation among the

shared physical resources.

Workload awareness Orchestrated resources management at DC facilities must be capable of

receiving the workload hints or requests specifying network-related

behaviours (connectivity, latency, path redundancy…) and to enforce these

requirements through the DCN controls and management tools.

Non-Functional Requirements

Name Requirement Description

Usability Flexible, multi-domain service operation without an impact on service when

adding or removing network elements, domains or configuring network

parameters. Backward compatibility in case of implemented changes outside

of the user interface. User-friendly interface.

Reliability Service reliability is a vital, non-functional requirement, especially in multi-

domain scenarios in which several resource, network and services

administrators may collaborate to achieve the E2E connectivity service.

Performance E2E service performance is essential to the use case.

Efficiency Network efficiency can be measured by mapping QoS requirements onto key

performance indicators while providing the service.

Computation and storage

location sensitivity

Computation and storage location sensitivity: there are many reasons to

consider the physical location of the data placed in the cloud as key for

businesses (e.g. the performance experienced by the users to access the

data). Depending on the nature of the data (medical financial, etc.) there are

also strict legislated requirements to take into account.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

59

D.2.2.3 Cloud Support Use Case: SDN-Enabled GÉANT Open Cloud Exchange

Cloud computing is an emerging topic, which has great momentum in both private and public sectors. Reasons

for that are mostly economically driven, increasing capex/opex2 and the requirement for smart aggregation and

provisioning of cloud resources and services. Cloud support in GN3plus is a cross-activity initiative between

JRA1T2, focusing on architecture of cloud services, JRA2T1 is investigating an SDN framework for supporting

cloud computing initiatives, and SA7 is designing and providing cloud services on top of the architecture. This

use case focuses on gOCX and its SDN extension.

Overview

The GÉANT Open Cloud Exchange (gOCX)[GOCX] is an JRA1T2 initiative. It enables cloud services provisioning

between the private sector, represented by public Cloud Service Providers (pCSPs) and the public sector, the

(N)RENs by the academic CSPs (aCSPs).

The gOCX service is focused on network layers (0), 1, 2 (and 3), and deals with negotiation, establishing and

disseminating connectivity, and (optional) will run on top of a trusted third-party service (TTPs), hosted by a

neutral trust organisation, e.g. DANTE (GÉANT). Higher OSI-layers services affecting the network are

propagated, for example, by a brokering system.3

Purpose

In general, cloud services are provisioned on demand, using the Internet, which copes well enough for most

cases/applications. Services such as HD Video streaming, or transferring bulk data within a multi-domain network,

however, have special needs for Quality of Services (QoS), e.g. guaranteed bandwidth in E2E or B2B. Thus, the

proposed gOCX architecture acts as an “Open Cloud Exchange” over GÉANT that will offer exchange of cloud

services via direct connections bringing together academia with CSPs, according to BigBusiness meets

BigScience, as Helix Nebula (HNX)[HNX] demonstrates. Furthermore, the gOCX will facilitate interconnectivity

over multi- domains between pCSPs and aCSPs, providing multipoint-to-multipoint cloud services, as

demonstrated at the TERENA Conference 2014 [GOCXMOV].

Strategy and Objectives of gOCX to SDN–gOCX

Strategically, the conceptual platform OCX acts in a similar manner to an Internet exchange point (IXP). It is a

peering mechanism that facilitates the inter-communication over domains for special demands of network

resources, including:

 The capability for a direct connection to multiple service providers that can be deployed at different layers

(0)1, 2 (and 3).

 Virtual, isolated and secure extensions of the direct connections to the networks of the users, and to their

requested services.

 Automatisation using a gOCX inter-/intra connectivity management portal (orchestrator) will allow the

(N)REN users’ and/or institutions to choose among different offers, to setup their preferred connections

2 e.g. Infrastructure, HW components etc / e. g FTEs, operations activities
3 Brokering system: The term “brokering system” stands for an agent/agency to negotiate transactions (services)
technically, based on an economical (financial) model between different parties.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

60

and to manage and monitor them. Automatisation allows cloud providers to dynamically setup their

offerings on top of inter-/intra network connectivity and to monitor their users’ activity, too. Furthermore,

an SLA clearing house service can also be provided.

Thus, gOCX provides “connectivity as a service”.

SDN/OpenFlow shows potential as the underlying framework that could enable the gOCX service provisioning

(see Figure D.6). The aim is to introduce SDN, as a tool to enable scalability and automatisation at the point of

negotiating the provisioning. At the same time, SDN/OpenFlow technologies can provide the orchestrator for the

aggregation of resources and provisioning of services to the end-users into a/pCSP. In order to achieve this goal,

the south- and northbound APIs of the orchestrator must be thoroughly investigated, and the control-/data

(forwarding) and orchestration plane (re)designed. Another challenge is the management and monitoring of such

an infrastructure. The management plane (not described in this document) will be defined out of band, with access

to the (Ethernet) Intelligent Platform Management Interface (IPMI) of the gOCX components. Furthermore, the

purely functional details of the SDN–gOCX architecture are to be provided in further detail in subsequent

paragraphs of the current section.

The ways in which SDN–gOCX might apply to the optical layer needs further investigation for a multi-domain

approach, depending on how the broadcast domain is defined. One example of this is providing “connectivity as

a service“ on the lightpath from the p/aCSP to the OCX instances, using ROADMs [ROADM].

A first step towards a proof of concept (PoC) is to understand the (N)REN and CSPs’ needs/requirements that

will be an indicator and a driver for implementing an SDN–gOCX -Infrastructure over GÉANT. With this goal in

mind, the questionnaire [CQUE] presented in Appendix A was used. Efforts to contact the major CSPs4 in order

to establish a strong collaboration and define a set of standard connectivity alternatives that will help define an

API for creating and managing the direct connection to a CSP are ongoing.

Roles of gOCX Parties

gOCX/parties and users such as the p/aCSPs and the NRENs’ end users as trusted third parties will have to

interact in a multi-domain environment.

The SDN Capability and Innovation on gOCX

A gOCX is a concept platform designed to enable high performance, multi-site, cloud clusters to work together

easily and effectively. In SDN–gOCX (see Figure D.6) connectivity is provided as a service in the form of slices.5

Of course, a TTP and also a brokering model will be elaborated in further design phases. At the time of writing

this report, the gOCX is aligned to the GÉANT productive environment.

A generic topology of an SDN–gOCX infrastructure (see Figure D.6) will be described in the following paragraphs.

A minimum number of four PoPs will allow implementation of realistic connectivity as a service scenarios over

the production GÉANT network. Three functional planes will be described, the data (forwarding), control/status

and orchestration/release plane.

4 AWS (Demo SC14), CloudSigma (see Demo SC14), Microsoft, IBM
5 A slice is a logical partition of a physical entity, in this case a slice between p/aCSPs – multipoint to multipoint service provisioning upon

the physical substrate, the GÉANT network.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

61

Note: Management plane is not visible

 Figure D.6: SDN–gOCX, a centralised approach

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

62

 The data (forwarding) plane (see Figure D.6), is the “workhorse” of router/switches and is responsible

for parsing packet headers in a high-speed search on ASICs. It manages QoS, filtering, encapsulation,

queuing and policy management all on silicon or also called customised ASICs. On the SDN–gOCX

entities, the data (forwarding) plane is running on the devices/instances. According to the southbound

API in use, e.g. “OpenFlow2.0” [OF2.0] a redesign of the forwarding abstraction is needed.

 The control/status plane (see Figure D.6) is a logical, centralised platform that interacts both through

its south- and the northbound interfaces using the OpenFlow protocol v(x) with the physical substrate of

the gOCX infrastructure and the p/aCSPs OpenFlow controllers running on top of the architecture or

remotely at CSPs locations. At the time of writing (November 2014), tools used as a logical centralised

platform are FlowVisor [FV], VeRTIGO or OpenVirteX (OVX) [OVX], which allow independence from the

topology of the physical substrate to extend the network capability by continuing on link and/or node

virtualisation scenarios, and further the useful isolation of user-traffic/slices of various experiments. Multi-

tenancy is guaranteed in this example. The OpenFlow controllers are in access of the p/aCSPs. This

would allow the configuration of slice topologies by policy management or network virtualisation through

open northbound APIs. SDN/OpenFlow will guarantee dynamical negotiation, establishing and

dissemination of connectivity that can also be defined as network “Flow Space as a Service”. Thus,

research on OVX and OpenFlow 2.0 would be a future perspective. Using a valid control platform is a

challenge, while a first step for harmonising controllers is planned in Q4 2014.

 The orchestration/release plane (see Figure D.6) covers the end-user access to all authorised cloud

services. In fact, there is a Web-UI in place with a clearinghouse that allows setting up a user profile –

member of a p/aCSP – for authN/Z the end-users and to set-up/introduce their slices/services. On the

orchestration layer, on a broker platform that would take care of aggregation, and distribution of cloud

services coupled with their privacy. Experiences in orchestration of slices upon OpenFlow-enabled

network components were, for example, collected on the GOFF (GÉANT OpenFlow Facility) with the

OFELIA Control Framework (OCF). Approaches based on OpenNaaS [OPENNAAS], orchestration

regarding OpenDayLight or an OpenStack implementation with Neutron as NaaS could be adopted.

Requirements of an SDN–gOCX

Functional Requirements

The functional requirements may include, but are not limited to:

 End-users should be able to request/withdraw a service through a common Web-UI.

 Services should be automatically provided when requested by the end-users through the Web-UI

 The SDN architecture has to guarantee traffic isolation using network virtualisation.

 pCSPs/aCSPs/academicICTs should be able to program/configure through northbound APIs remotely or

by generic controllers of the SDN-architecture their own network topology (NaaS) and network services

with corresponding QoS guarantees.

 The (N)RENs should be able to provide automated support to the pCSPs/aCSPs in establishing

connectivity to their peering points.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

63

 pCSPs/aCSPs/academicICT should be able to negotiate the service characteristics among each other

by, e.g. policy management through open APIs offered by the SDN network provider, e.g. GÉANT.

 Service provisioning should be only allowed after an authN/Z process – see TTP.

 The required mechanisms to guarantee AA and Accounting or a brokering platform, a “marketplace”, in

place.

Non-Functional Requirements

The non-functional requirements may include, but are not limited to:

 The solution must be technology agnostic – valid for any combination of (SDN)OpenFlow, Standards and

Network virtualisation technologies.

 The conceptual SDN–gOCX architecture should benefit from OpenFlow granularity and flexibility.

 End users consuming cloud services should be invited to access cloud services through the Web-UI

should.

 The performance is the key requirement for providing cloud (network) services for guaranteeing QoS.

 Reliability of the SDN–gOCX architecture is essential to implement on top of a market place.

Details of functional, and non-functional requirements to a SDN–gOCX will be elaborated in further design

phases. A position paper on SDN–gOCX is planned for April 2015.

Future Perspective

The visibility of gOCX is pursued via demonstrations on appropriate conferences/events. Three types of OCX

instances, including: a local OCX(NREN), GÉANT-like open connect and a hybrid OCX (NREN share)6 are

envisaged.

Scalability, reliability, usability and network management, however, require automatisation. The best-placed

solution is to introduce SDN as a framework, which allow configurability/programmability of (network) resources,

slices (experiments) or authorised Cloud services (brokering) from the end-user perspective. Furthermore, SDN–

gOCX is a framework focusing on federation, where NRENs and the private sector can participate in exchange

services, “BigBusiness meets BigScience”. In order to realise this, a TTP service on a brokering model has to be

elaborated.

D.2.3 Connection-Oriented Multi-Domain SDN

Connection-oriented multi-domain SDN is a concept that allows the provision of multi-domain circuits in the multi-

domain environment involving OpenFlow domains. OpenFlow doesn’t define how to create multi-domain

networks, and there are no widely used tools for the provisioning of connections across multiple SDN/OpenFlow

domains. Therefore, an investigation of how the NSI protocol could be used to provide connectivity across the

6 Demonstration at the SC14 Conference

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

64

OpenFlow domains to facilitate participation in the BoD service (see use case described in Section D.2.2) has

been conducted.

D.2.3.1 Network Service Framework Overview

The Network Service Framework (NSF) is an effort of the Open Grid Forum (OGF) that describes network

resources as manageable objects and enables the automated provisioning of federated network services. Within

the framework, network services are used by applications to monitor, control, interrogate and support the network

resources. One of the key services included in the NSF is the Network Service Interface – Connection Service

(NSI-CS), which enables the reservation, creation, management and removal of connections that traverse

different network domains [NSF].

Architectural Elements

The NSF defines a set of architectural elements that compose the NSI Architecture, which can be applied to

every service supported within the framework. All these architectural elements reside on a notional service plane

called the NSI Service Plane.

 NSA (Network Service Agent): Software agent that implements the NSI protocol to communicate with

other NSA. Can take the following roles:

○ Ultimate Requester Agent (uRA): First NSA in the request chain. The originator of a service request.

○ Ultimate Provider Agent (uPA): Last NSA in the request chain, services the request by coordinating

with the local Network Resource Manager (NRM) to manage network resources.

○ Aggregator (AG): An NSA that aggregates the responses for its child NSAs and acts as a gateway to

other providers.

 Network Service Interface (NSI): Provides secure and reliable sessions for service-related

communication between two NSAs.

 Message Transport Layer (MTL): Provides reliable and secure delivery of messages between NSAs. It is

the message delivery mechanism.

 Coordinator Function: Provides intelligent message and process coordination.

Furthermore, there is an element outside of the NSI Service Plane.

 Network Resource Manager (NRM): Controls and manages the local network resources.

Topology Representation

NSF identifies two different topologies, the inter-domain topology, concerned with the interconnection of the

domains and the intra-domain topology, related to the resources within the network. It is worth mentioning that

only the inter-domain topology is inside the scope of NSF, which is represented using a schema based on the

Network Markup Language (NML) called NSI Topology [NSI-CS].

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

65

In order to identify network resources NSF defines the Service Termination Points (STP). An STP is a URN

identifier that refers to a network resource capable of terminating an NSI connection, which usually identifies

physical or virtual network ports.

An STP is defined as a three-part identifier:

 The network identifier points to the domain in which the STP is located.

 The local identifier to the specific resource in that domain.

 The optional label component allows flexibility in STP definition.

Additional qualification by a labelType and/or labelValue pair can also be used to describe technology-specific

attributes of the STP.

Service Definition

The Service Definition instance describes the allowed parameters with optional value restrictions that can be

used during the service reservation process. The uRA uses the Service Definition to generate the request

message, whereas the uPA uses it to validate the request.

NSI-CS uses the hierarchical XSD schemas to describe the allowed parameters in the generic Service Definition

(e.g. P2P Base Service) and XML documents to describe additional service-specific parameters and restrictions.

D.2.3.2 SDN/OpenFlow Integration in NSF

One of the most important features of NSI is that it aims to be a technology-agnostic solution, meaning that it is

intended to work regardless the underlying transport technology used at the network. This is achieved by means

of the Network Resource Manager (NRM), which has been previously introduced.

In the case of OpenFlow domains, NSI-CS can complement OpenFlow with the necessary mechanisms to

provide multi-domain mechanism. By using an OpenFlow controller as the NRM of a domain, it is possible not

only to obtain multi-domain connectivity services between OpenFlow enabled domains, but also between

OpenFlow and non-OpenFlow domains. In Figure D.7, the NSI service plane with the architectural elements

introduced in the previous subsection is depicted. It also shows how an OpenFlow controller can be integrated

within the NSF as an NRM.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

66

Figure D.7 OpenFlow integration in the NSF Architecture

However, the particularities of OpenFlow, especially its great flexibility and granularity, make the integration with

NSI-CS a challenge. In the OpenFlow domains, packet forwarding can be carried out based on a much wider

range of parameters than in the traditional forwarding approach. As a consequence, it is possible to have different

types of connections within the OpenFlow domain, from pure Layer 1 connections to Layer 4 connections and

combinations.

Taking into account that in the NSF the requested service must be supported in all the domains involved, the

granularity of OpenFlow imposes some challenges and the optional OpenFlow-specific parameters need to be

passed without disabling the possibility to setup a circuit in non-OpenFlow domains. The most recent specification

of this service (v2.0) introduced new data model elements that enable the extension of the base functionalities

without changing the core elements of the protocol. One of the most important features, from this considerations

point of view, is the existence of the ‘ANY’ attribute in NSI messages, which semantic meaning depends on a

defined namespace instead of on pre-defined assumptions [CTv2.0].

By utilising the newest Service Termination Point (STP) definition, it is possible to code into the ‘TypeValueType’

string attribute [STv2.0] information regarding e.g. a range of VLANs, a Layer 3 IP subnet/range or even the L4

TCP/UDP ports available on the interface. In that way, appropriate STP ports can be chosen to transport network

traffic with specific network parameters (characteristics). The schema of ‘Reserve’ connection request remains

untouched, and for a connection reservation, process basic NSI service type (P2P) can be used, providing

compatibility with the non-SDN domains [CSP2P].

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

67

In the second version of NSI-CS, the definition of the ‘Reserve’ request message uses the ‘serviceType’ field

(inside the ReservationRequestCriteria object) in order to transport additional (technology- or domain-specific)

parameters within the protocol message. SDN/OpenFlow-specific information can be passed in the form of new

base service type or by defining a new optional namespace in the request.

 New service base type: The protocol defines a base P2P service type that provides a set of properties

for multi-domain connections [SDEC]. However, the ability to define additional parameters (placed in the

‘ANY’ attribute) could make it possible to perform the agreement between the different service domains

agents involved. As a consequence, the whole service could be provided to the customers. In order to

provide SDN/OpenFlow-specific connections, a new service type can be proposed. It should extend the

service base type with Layer 3 or/and Layer 4 fields to enable the setup of more granular, flow-based

connections. There is also an opportunity to define a new service with the needed parameters and

attributes.

 New OpenFlow/SDN-specific namespace: Despite service-specific attributes, a ‘Reserve’ request

possesses a ReservationRequestCriteria object with a property called ‘anyAttribute’, which has been

added in order to cope with any domain/technology-specific extensions without a need of modification of

the protocol core and the addition of new service parameters or the whole service. Custom SDN

namespace might enable flexible approach to the management of network resources and enable the use

of connection-related SDN apps (e.g. custom statistics monitoring, packet inspection, resiliency or load

balancing etc.) or suggest a quality of service for the circuit. Domains that do not support this extension(s)

should silently ignore them, instead of dropping the whole request. As one of the NSI’s basic service

types, [SDEC] can still be used in the connection request, circuits via non-SDN domains can be easily

established.

D.2.3.3 Proof of Concept

A prototype based on the OpenDaylight controller, results of the DynPaC OpenCall7 project and NSA code

developed in the GÉANT project has been built. The prototype uses VLAN tags to create circuits across

OpenFlow domains and communicates with other domains using NSI protocol. A demonstration involving three

domains: EHU-OEF test domain located in Spain, PSNC test domain located in Poland and one geographically

distributed domain created in the GÉANTs testbed is planned for the SuperComputing 2014 (November 2014, in

New Orleans).

D.2.4 Multi-Domain Slice-Oriented Approach

A slice-oriented, multi-domain SDN concept is focused on how distributed slices of networking resources can be

created and used among many different SDN domains. In this section, different architectural approaches and

functional modules are identified that the slice-oriented version of the SDN multi-domain service may involve. A

high-level overview of the available SoTA possibilities are provided, to detail specific technology solutions and

components, as well as illustrate the need for a multi-domain slice-oriented solution and associated challenges.

7 http://www.geant.net/opencall/SDN/Pages/DyNPaC.aspx

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

68

D.2.4.1 Introduction

SDN-based technologies have provided techniques to share and partition networking resources, i.e. “slicing”. For

instance, university campuses provide many different, multi-tenant services deployed within their networks: some

universities have medical or high-security facilities and must maintain appropriate regulatory compliance. Also,

student networking services vary, depending on whether they are on or off campus. Administration offices must

also be able to manage the day-to-day activities of the university separated from the academic activity, etc.

Companies present a similar case: different departments require different networks to which only the members

of each department must have access.

The previous examples constitute intra-domain situations, nevertheless, there are network services that imply

multi-domain scenarios. In the case of university campuses, collaborative experimentation platforms are currently

being developed to provide resources to experimenters, developers, etc. On the commercial side, companies are

also establishing partnerships to set up collaborative networks and share resources across the world, as well as

provide international platforms for software development testing, as in the case of FI-PPP XIFI project [XIFI], and

FELIX project [FELIX].

Thus, the need of defining SDN-based scenarios comprising heterogeneous domains in order to enable new

complex services and applications is becoming clear. In these complex scenarios, ensuring multi-tenancy and

isolation at the same time is a must. There is also a requirement to federate domains (or at least establish

collaboration agreement among them) and offer services/resources as a single entity to the tenants (taking into

account that different domains are currently controlled by different SDN Controllers and Resource managers).

Slicing mechanisms constitute a key and valuable tool that SDN multi-domain frameworks should exploit, since

this approach may provide solutions to some of the previously stated challenges and requirements that these

types of services impose, especially in terms of service isolation. Therefore, one of the objectives of JRA2T1

aims to research current state-of-art mechanisms and technologies and define a multi-domain SDN framework

incorporating the advantages of slicing techniques that enables to address complex provisioning service

challenges.

D.2.4.2 Control and Management Distributed vs Centralised Architecture Approach

Introduction

One of the key tenets of SDN is the potential advantage it presents in the separation of a network device’s control

and data planes. This separation affords a network operator flexibility while designing the control and

management planes in a programmatic way.

The shape of the architecture control and management planes go hand in hand with discussions about multi-

domain provisioning and connectivity services. Multiple SDN domains may imply several independent SDN

control planes (i.e. separated and potentially different SDN controllers, each managed by its own NOC). At the

same time, the heterogeneity of the domains entails a variety of control plane and functional blocks for network

management. In summary, it is necessary for the different domains to be coordinated. In this section, the different

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

69

foreseen alternatives are analysed, i.e. distributed, centralised and orchestrated control and management-plane

approaches, setting out their advantages and limitations.

Centralised Approach

The SDN multi-domain centralised approach assumes the existence of a single entity (SDN controller) that

controls the entire network’s resources at the data plane, with each of the network resources running a local

management agent. The centralised entity has potential to coordinate a very large number of agents. This

centralised manager, typically known as NMS (Network Management System) monitors and administers several

network domains, composed of network elements (NEs), known as managed entities. This approach makes

extensive use of Northbound and Southbound SDN interfaces of the SDN controller. Figure D.8 shows an

overview of the centralised approach, illustrating a manager with a single controller talking to several SDN

domains.

Figure D.8: Full centralised approach

The primary advantage of a centralised control plane is the view of the network it can provide to management,

service and application layers, as well as the simplification of programmatic control. The centralised approach

also simplifies the management of complex flows that are related to specific services and applications traversing

several domains.

On the other hand, factors such as the following [SDN] make centralisation of multi-domain control extremely

difficult and perhaps undesirable:

 Scale: A centrally based controller will support a control session with each managed device. As the scale

and volatility of the network increases, updates to an individual element require increases in per-session

I/O and processing. Additional features, such as collecting analytics through the channel or performing

other management tasks, presents an additional burden. At some point, it makes sense to divide the

burden into more manageable pieces.

 High Availability: Even if the control-session-scale burden can be handled by a single controller, that

controller becomes a single point of failure that would result in the entire network failing. Even if the entire

network is configured to operate ‘headless’, without central control functions for a significant period, at

some point other network failures or changes will need interaction with the controller. If the controller has

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

70

not been restored by then, this will be a problem. The simplest high availability strategy would allow for

an active/standby combination of controllers.

 Geography: Within a data centre, almost all elements are geographically close to each other, even if the

data centre is many city blocks or many stories tall. Once the controller and controlled element are

separated by a metro, state, or national network, transmission delay could begin to affect the efficiency

of operation. Greater geographies also increase the risk of partition (separating the controller from the

element).

 Trust: While thinking on a centralized approach, it is important to take into account the fact that different

domains may imply different companies/SMEs/Research institutions, which definitely want to preserve

their domain topology and information details. A centralised approach to network control requires a

central entity with (at least) a partial view on the domains being controlled, fact to which domain owners

may be reluctant due to privacy and security items.

Orchestrated Approach

In a distributed model, the centralised manager is combined with distributed controllers and data planes. The

distributed model with a centralised management interface makes it look as if the whole system is being controlled

centrally, even though each node is individually managed in the distributed network. In this case, the East-West

controller interfaces (among the distributed controllers) play a key role in terms of network control, while

propagating the rules to provide with E2E services.

The good news about distributed SDN networks is that they are evolutionary and easy to scale as networks

expand, rather than the traditional centralised model of ‘rip and replace’ (ripping out the old system and replacing

it with a new system). It is also easier to apply policies to individual departments for specific applications with this

approach [SDN].

Alternatively, convergence and load balancing are important focal points for network operators/designers, and

may present limitations while discussing in terms of multi-domain SDN scenarios.

 Convergence: One of the components of convergence that might be obvious is the propagation delay of

a specific update. This is normally a function of the average distance from the site of first change

measured in the number of intervening nodes that have to re-flood/re-advertise the update.

 Load balancing is normally applied to equal cost paths or bundled point-to-point circuits, although there

are non-equal-cost variants for certain purposes. The actual efficiency of a load balancing algorithm is

bounded by both the computation algorithm itself, as well as the potential imbalances in flow size an

implementation might encounter. These can result in bin-packing efficiency problems that ultimately lead

to limitations in the number of equal cost paths or bundle members supported by the implementation.

 From the implementation view, there is also complexity in deploying a distributed control network. It

may not be possible to get to all of the nodes to create the same path with the same prioritisation – so

there are timing and synchronisation issues.

Figure D.9 shows the distributed scheme; still the management is centralised and talks to distributed combined

SDN controller each of which controls its own SDN domain.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

71

Figure D.9: Distributed approach

D.2.4.3 Sliced-oriented, multi-domain solution based on OpenNaas management platform

While addressing the slice-oriented multi-domain approach, several technologies and mechanisms in terms of:

virtualisation and slicing (to create the flowspace), intra- and inter-domain connectivity and a multi-domain service

orchestration, need to be taken into account.

This section proposes a generic approach, with examples of services and technologies that could match the

slice-oriented context.

Virtualisation and slicing technologies: Networks today typically achieve isolation using low-level mechanisms

such as VLANs or firewalls. These mechanisms can be used to effectively provide both traffic and physical

isolation, but their use requires careful configuration by expert operators and is prone to errors. The creation of

flowspaces also entails some specific requirements. Thus, some other alternatives to create flowspaces should

be studied.

FlowVisor is the most prominent example of a system that provides isolation in OpenFlow networks. It allows

multiple controllers to manage a single network [FV]. Architecturally, FlowVisor is organised as a hypervisor that

sits between the controllers and switches, filtering the events going up to controllers and masking the messages

going down to switches. In addition, FlowVisor allows an administrator to identify ‘slices’ of the flowspace using

topology and packet header characteristics similar to slices. FlowVisor also supports bandwidth, switch control

plane, and controller isolation for slices, using heuristics to estimate the amount of processing power needed to

implement each slice.

Another example of a system that provides isolation using a hypervisor-based approach is XNetMon [XNETMON].

The frameworks for virtualising the described OpenFlow networks can also be used to provide various forms of

isolation.

VERTIGO also constitutes a potential alternative [VERTIGO]: VERTIGO is able to instantiate generalized Virtual

Topologies (VT) including virtual links and virtual ports by exposing different virtual views of the network to

different controllers Vertigo could be used as a tool for enabling virtualised overlaid networks.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

72

OpenVirteX, developed at ON.LAB, is another example of the network hypervisor that allows creation of multiple

virtual programmable networks on top of a single physical OpenFlow based infrastructure [OVX].

A Flowspace firewall, developed by Indiana University, provides similar functionality to FlowVisor. It provides

OpenFlow virtualisation on a per-VLAN, per-port basis and allows rate limiting of control channel messages

between the controller and switch. (For more information see [FSFW].)

Intra-domain connectivity service

Each domain owner administers his or her own internal connectivity services. Therefore, while dealing with a

scenario composed of OF and non-OF domains it is important to provide with a heterogeneous solution that

enables the creation of the flowspaces’ internal domain connections and works with established intra-domain

connectivity services.

Inter-domain connectivity service:

It is necessary to make use of a stitching approach in order to link the adjacent OF and non-OF domains. One of

the preferred options for this partnership is to make use of NSI protocol. A first step to stitch domains may consist

of deploying the NSI agents on top of each controller of the SDN/OpenFlow domains. This corresponds to a

distributed approach for a Distributed NSI framework, which presents a drawback: it may entail added complexity.

Issues derived from control plane propagation latencies and the number of controllers used is typical of distributed

frameworks. Distributed approaches imply more abstracted information interchange to preserve privacy. Each

NSI Agent should track the controller status, and the status of the other OpenFlow domains and keep this status

up to date. An alternative to address this complexity is to coordinate the NSI framework in a centralised way, with

NSI plus a management platform acting as orchestrator. A deeper analysis of NSI and other potential candidates

will follow up the research effort.

Service Orchestrator

The slice-oriented, multi-domain approach will make use of an orchestrator, which enables control, management

and coordination of inter-domain, virtualisation and flowspace creation services. To achieve this, the candidate

orchestrator may comprise the following elements:

 Platform layer: This layer provides re-usable components to manage services. For instance, to make

use of a Driver to the OpenFlow controller in each domain.

 Resource layer: Specific resource types, capabilities, and devices are added in this layer. Two elements,

Resources and Capabilities play a major role. A Resource represents a manageable unit. It can be a

switch, a router, a link, a logical router, or even a SDN Network. Capabilities also constitute interfaces to

a given Resource functionality. For instance, for the SDN Network resource, a Capability could be the

“Network Topology”.

 Intelligence layer: This layer groups external application-consuming APIs in order to perform complex

network operations, thus leveraging network abstraction provided by underlying components. The NSI is

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

73

one of these services. Each NSI “greenbox” operates on top of each of the SDN Network resources, so

that these become “NSI domains”.

Thus, the orchestrator has the perspective of the entire domain. One potential orchestrator for the centralised

approach could be using OpenNaaS [OPENNAAS] as a management platform system. Besides the orchestration

functionality, OpenNaaS includes some other options and functionalities that could be re-usable for the E2E multi-

domain connectivity provision. Some examples include:

 REST-APIs to smartly perform the multi-domain service appearance to the user requesting the service,

and abstract all the service complexity for the user.

 It may enable certain management rights delegation to the user, e.g. not only to enable to request a multi-

domain connection between two end-points, but also to configure certain flow-space options of specific

domains to which the user has rights.

 Hybrid scenarios (SDN and non-SDN) could be easily integrated in OpenNaaS.

There are some other alternatives (e.g. OpenDayLight) that will be further analysed.

Figure D.10: Sliced-oriented, multi-domain solution approach.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

74

Figure D.10 shows an example of the slice-oriented, multi-domain approach. There are three domains. Two of

them are OF domains and there is also an MPLS-based domain. The orchestrator manages and controls the

inter-domain connectivity service configuring the border nodes of each domain acting as Service Termination

Points (STP). The orchestrator also interacts with OF agents and a MPLS driver to tune the intra-domain

connectivity services. Each of the services in the system should expose an interface to the orchestrator so that

all the configuration setting can be done. The consumer of the flowspace would control and manage the resources

assigned by means of the orchestrator. This offers a GUI with specific, enabled features to guarantee that the

user is able to configure the assigned resources according to his/her preferences.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

75

Appendix E SDNapps

E.1 Changing the Rules and Perspective

In SDN, applications own a real opportunity to rule and define the network. Applications are enabled to tap into

information that the controller possesses in terms of traffic patterns, application, etc., and to react accordingly to

serve whatever the application desires; thus, business applications can operate on an abstraction of the network,

leveraging network services and capabilities without being tied to the details of their implementation. SDN makes

the network not so much "application-aware" as "application-customised" and applications not so much "network-

aware" as "network-capability-aware". Nevertheless, there have been specific issues observed that constitute a

real limitation while applying SDN to Layer 4-7 networking and making the best of the features that SDN

technology provides with. The current work is focused on Layers 4-7 and is devoted to propose the so-called

SDNapps as part of the SDN architecture framework. The overall target consists of introducing a middleware

layer to enable SDN with the mechanisms to customise the SDN control layer and configure the forwarding plane

“a la carte”, depending on the requirements that on top application exert, overcoming observed limitations.

In the following sections, relevant SDN-based platforms and architectures are presented and the observed

limitations towards the SDNapps concept, architecture and benefits. SDNapps do not present a disruptive

concept for SDN, but are an added value for stakeholders, while providing their services on top of an SDN-based

environment.

E.2 Most Relevant SDN Controller Proposed Frameworks

Starting from previous SDN controllers’ developments, several SDN framework initiatives have been developed.

The most relevant are briefly reviewed for its common features below. For further information and architecture

details, check appendix document about SDNapps [SDNAPPS].

SDN frameworks Description

Floodlight Floodlight is an open free Apache-licensed Java-based OpenFlow Controller

and a collection of applications built on top the floodlight controller. These are

used to solve different user needs over the network [Flood1]. The design

implementation principle of FloodLight is the following one: “Everything is a

module”: Modules export services. According to the SDNapp definition

provided in Section E.3, both modules and REST applications are SDNapps.

Ryu Ryu is a component-based, software-defined networking framework, Apache

2.0-licensed and fully written in Python. Besides OpenFlow, it also supports

various protocols for managing network devices. Ryu architecture follows the

standard SDN architecture. The SDNapps communicate with the Ryu SDN

framework by means of well-defined APIs. The control layer includes several

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

76

Ryu apps that are also used as services by the SDN framework, as the

“Module Applications” are used in the Floodlight design.

OpenDaylight OpenDaylight is an open source project with a modular, pluggable, and

flexible controller platform at its core. This controller is implemented strictly in

software and is contained within its own Java Virtual Machine (JVM).

The controller exposes open northbound APIs that are used by applications.

OpenDaylight supports the OSGi framework used for applications that will run

in the same address space as the controller while the REST (Web-based) API

is used for applications that do not run in the same address space (or even

necessarily on the same machine) as the controller. The business logic and

algorithms reside in the applications.

HP SDN Application Store HP has created a software development kit (SDK) for the northbound APIs on

its SDN controller and the HP SDN App Store, where customers can easily

browse for SDN applications and download and install them on HP's

controller. The HP SDN SDK provides developers the essential tools to

create, test, and validate SDN applications, leveraging HP’s SDN

infrastructure and full complement of support services. The HP SDN App

Store creates an open marketplace for SDN applications [HPAPPs].

E.3 SDNapps Concept Statement

E.3.1 SDNapps Definition

SDNapps can be described as generic network functionalities running on top of the SDN/OpenFlow network,

adapting the control plane to fit operator and carrier requirements in terms of control and management and

consequently configuring the forwarding plane “à la carte”. Consequently, SDNapps can be understood as a kind

of packetised and modular middleware functions that implement specific functionalities and core services of

common interest integrated within these SDN controllers, but also, as controller-like and controller-less

applications placed on top of the REST API interface to the SDN framework. While important classes of SDN

application make sense integrated with the SDN controller (e.g. network virtualisation, virtual firewalls, etc.), also

integrating performance aware SDN applications (e.g. load balancing, DDoS mitigation, traffic marking, multi-

tenant performance isolation, etc.) within the analytics platform makes architectural sense [DIFFERENCE1].

Taking a detailed look, a basic SND controller’s core functionalities can be defined as those that enable the

controller to learn and communicate with lower layer OpenFlow devices, being aware of the network topology

and being able to receive packet-in inputs and install flowmods into the flow rule tables of OpenFlow devices

accordingly, plus additional OpenFlow standardised services. Those functionalities could be denoted as basic or

core for the controller. Extra functionalities can be added thanks to the deployment SDNapps, or even improve

or replace functionalities integrated by the controller. Moreover, an SDN application is a software program

http://blog.sflow.com/2013/02/sdn-and-large-flows.html
http://blog.sflow.com/2013/03/ddos.html
http://blog.sflow.com/2013/06/marking-large-flows.html
http://blog.sflow.com/2013/06/multi-tenant-performance-isolation.html
http://blog.sflow.com/2013/06/multi-tenant-performance-isolation.html

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

77

designed to perform a task in a software-defined networking (SDN) environment that can replace and expand

upon functions that are implemented through firmware in the hardware devices of a conventional network

[SDNDEF1]. Thus, instead of having controller-specific functionalities, these should be able to be packetised and

externalised, so that depending on the specific needs required by the on-top applications, specific SDNapps

could be incorporated. This feature provides flexible, scalable and automation control to the application layer,

gaining unprecedented programmability and enabling business to rapidly adapt according to new business needs

and requirements.

A top-standardised interface from a controller would ease the use and communication of SDNapps on different

SDN controllers or even between apps, but it would also limit SDNapps capabilities to a specification that would

be really difficult to achieve. An alternative, feasible solution is a middleware framework capable of

communicating with different SDN controllers and SDNapps. This middleware framework would be responsible

of managing communication between different SDNapps and behave as an adapter. Furthermore, a middleware

framework that integrates Basic Network functions and services with a bunch of SDNapps could act as a

controller. Deploying additional SDNapps, the framework would extend its functionalities and value, and would

give a new range of opportunities to tailor a custom “controller” shaped for the customers’ needs. An SDN

controller is useful because it provides that single point of control to modify the forwarding path in the switches,

but it's an enabler for customers to build the applications they need specific to the business problems they are

trying to solve. SDNapps enable network automation, multi-tenancy and integration. SDNapps appendix

document includes extended information about SDNapps and the proposed framework [SDNAPPS].

E.3.2 Overcoming Barriers of Current Solutions: SDNapps Motivation

SDN Network solution cannot be a ‘rip a replace’ one, but rather an integrated one: SDNapps packaged

design contributes to the progressive technologies replacement and migration towards SDN, by providing

modular pieces of software, capable of integration in an SDN-based environment, and enabling new SDN-based

functionalities in the network environment as well as existing ones in such a way that the legacy technology

replacement can be progressively performed by adding functions in the forms of pieces (packages, modules,

SDNapps) of software.

Managing control traffic in centralised networks: The combination of service control software and multi-

vendor network telemetry illustrates a clear missing link for SDN: management of control traffic in centralised

networks. In any SDN model where information is collected to support central oversight of network behaviour,

there's a balance between the value of knowing enough and the cost of delivering too much information to that

central point. SDNapps enable virtualisation of specific functions, delegating the intelligence, control and

management of concrete features. By releasing heavy-load control functions to the controller and migrating them

in the form of pluggable/unpluggable SDNapps, the control and management traffic and specific heavy-load

computation operations constitute a smart compromise.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

78

E.3.3 SDNapps Framework

The SDNapp framework is defined as a Middleware deployed on the application layer and it is hooked to the

northbound interface over a SDN controller that might perform as a proxy. Figure E.11 shows SDNapps’ allocation

in an SDN-based architecture.

Basic Network Functions: A basic SDN controller, shaped with Basic / Core Network Functions may integrate

proxy services, a topology manager to enable awareness of Forwarding plane, a device manager to discover

hosts and OpenFlow-connected devices to the network, and a forwarding module able to read an input, compute

rule decisions and finally install the proper rules on the OpenFlow devices. The most important SDN controllers

can now share a common point on its architecture. Those basic functionalities are there to follow and meet the

standardised OpenFlow specification: a set of common functionalities to control and manage an OpenFlow

network.

Middleware framework: This provides the platform that enables the build of SDNapps. Such a platform (i)

provides a reference point to users making use of already deployed SDNapps (or deploying additional ones) as

well as (ii) integrates in the control plane to coordinate SDNapps with the Basic Network Functions of the SDN

controller. The proposed middleware framework is OpenNaaS [OPENNAAS]. The middleware also exposes an

interface able to incorporate already-developed SDNapps from external repositories. This constitutes a very

valuable feature, since the programmatically aspects and services that can be incorporated in SDN-based

environments can be easily enlarged. An alternative solution is an integrated development environment, such

NetIDE [NetIDE] proposal. Similar to OpenNaaS, NetIDE will deliver a single development environment point to

support the whole development of controller apps in a vendor-independent fashion, offering a solution for

developers to deal with the current fragmented control plane in OpenFlow networks.

Figure E.11: SDNapps placement in SDN-based architectures.

SDNapps External
Repository

3rd party Services Users’ applications

Middleware plugins

Application Layer

Forwarding Plane
Network Devices / Resources

Southbound Interface (OF, NetCONF, etc.)

Control Plane
SDN Controller

Northbound Interface

Basic Network Functions

Simple SDNApps Complex SDNApps

App1

App2

AppN
App3

App4

App5
App7

Middleware Framework

API

API

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

79

Simple and complex SDNapps: The main difference between simple and complex SDNapps relies on the

following: a simple SDNapp can be defined as an atomic software program designed to provide a service or

perform single function, such as a topology mapping service, a basic firewall or a load balancer. Complex

SDNapps can also be a module or package of software, even multiple modules or packages, made of many

atomic software programs or basic SDNapps. They could be overlaid topology services (based, for instance, on

previous topology SDNapp), complex QoS-based routing algorithms, content availability, etc. Or even replace

and improve a basic firewall SDNapp extending its functionalities, options and capabilities. Even more, Complex

and Simple SDNapps could communicate and share data between them, offering improved functionalities. Thus,

SDN based architectures enable the possibility to programme, customise, shape and automate the network

control based on the SDNapps.

Middleware plugins: Middleware plugins enable users to consume SDNapps, to programme the network as well

as integrate their own applications with the SDNapps in order to develop more advance SDN-based services.

E.3.4 Challenges While Applying SDNapps

The main challenges in applying SDNapps are found in the lack of a standardised northbound interface, or a

specification to determine some common points in the northbound API of each SDN controller. While

standardising an API for SDN applications has been debated for a long time, an open framework in place of the

northbound API is a solution for a lack of northbound standardisation, essentially allowing applications to be part

of an SDN environment, and enabling a wide range of different network applications. The current SDN

environment is full of controller API implementations, which causes a fragmented SDN environment, where

application developers find it difficult to decide where to focus their implementation. This means that an SDNapp

is made to work on a single SDN controller, with a complete lack of portability. A great diversity of implementations

can be found in SDN deployments, and that is the most important challenge present because it is a strong barrier

that hurts the adoption of a viable SDN ecosystem. An open framework solution to act as a Middleware framework

would allow the community to work together and cooperate on their effort to increase portability and develop

SDNapps for different SDN controllers’ implementations, adding new features and API extensions without being

tied to a single controller’s API.

E.4 SDNapps Key Benefits – Who can benefit from SDNapps?

The most exciting opportunities for SDN are found in the key benefits of the SDN applications that can be built
upon its framework. These benefits are described below.

SDNapp key benefits Description

Costs reduction A key point of a SDN-enabled network, is that service providers can
create any number of software applications that can be deployed
over a network controller without any need of specialised hardware.
This can cut their opex and capex while promoting better service to
the end user by allowing for optimisation with less oversubscription.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

80

SDNapp key benefits Description

Network Services easy
customisation

Network operators and other stakeholders will find many benefits in
the ease of customisation of the network services, along with the
opportunities of introducing new capabilities into ageing and complex
networks. This enables a tailored control and granular
programmability to enable specific services on the network.

New monetisation
opportunities

SDNapps offer a wide range of monetisation opportunities. Similar to
the launch of consumer app stores for mobile devices, SDNapp
stores in place, can be made available for networking gear, allowing
Software Providers and developers to be able to develop applications
that might suit many interests.

Simplified deployment Thanks to SDN northbound interfaces, deployment of tools and
services is simplified with SDNapps. It allows implementation of
these capabilities on an SDN network quickly and inexpensively,
changing the speed and flexibility of how networks are managed.

Control of networks’
resources

Cloud Service Providers and Network Infrastructure vendors will
benefit from SDNapps control of/or visibility of underlying networks
and resources that enable much simpler provisioning in a multi-
vendor virtual environment. SDNapps allow monitoring of network
traffic and devices in real time, responding dynamically upon
application's changes.

Highly scalable, efficient
and manageable
network services

SDNapps, much like virtualised network services, deliver highly
scalable, efficient and manageable network services in form of
protocols, custom logics, and algorithms that are used to program
the forwarding plane / control plane.

Improved security SDN allow Cloud Service Providers and other stakeholders to deploy
apps such virtual intrusion detection system or virtual firewall on a
network controller. It can collect information about traffic patterns,
application data and capacity and enable custom security levels on
the network.

E.5 SDNapps Success Use Cases

At the time of writing, a number of stakeholders are developing and providing suites and catalogues of SDN

applications. Such catalogues constitute a good point of reference as a starting point, and might be relevant for

NRENs and GÉANT community. Some of them relate to Network optimisation through automation. Data centre

migration SDN applications are also receiving the attention of the industry due to the great impact that Cloud

exerts on the Network. In the following section, authors provide with some early commercial SDN applications

and Section E.6 describes the implementation of an SDN application done for this JRA2T1, which provides and

manage Real-Time Quality of Service (QoS) through an end-to-end network for real-time applications; this is the

QoS Pathfinder SDNapp.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

81

E.5.1 SDNapps Commercial Use Cases

SDN Security Application Example [SDNappex1]: This SDN security application offers protection by looking

at DNS queries and avoiding any nefarious URLs. As the user makes various DNS requests, instead of having

an appliance looking at these, the switches can intercept them and send them over to the controller. Without

adding any new hardware, the controller can run them by the HP TippingPoint IDS database to the URLs.

Another SDNapp security example [SDNappex2]: When it comes to security, SDN can use this information

for traffic engineering to direct flows to specific firewalls or IDS/IPS elements, thus helping to align the right

security application with the right traffic flow. In addition, separating the logical from the physical aspect of the

network allows Layer 4-7 attributes to follow the application as virtual machines migrate to new physical locations.

Content Availability [SDNappex3]: SDN apps built to handle content availability will be able to provision flows

in the network based on the type and availability of the content. Before routing requests to servers, SDN

applications can check the availability of the content in the content servers. A content-routing SDN application

will enable discovery of content in the content servers and provide intelligence on its availability. It can be used

to route requests to the correct server where the content resides. Therefore, SDN applications will be able to

route requests from websites that generate dynamic content, which are non-cacheable, to a server providing

dynamic content rather than a caching server, greatly reducing network latency.

Service Availability [SDNappex3]: SDN applications will also be able to monitor the availability of network

services across the entire network before routing data. Using SDN applications, content routing can be designed

to perform service-availability checks before provisioning flows to the network switches. Traditionally, network

monitoring services only check the availability of Layer 2 or Layer 3 paths. However, in the instance of the content-

delivering application being down, this would not be picked up when monitoring only Layer 2 and Layer 3 paths.

E.6 SDNapps Implementation

A proposed SDNapp use case is the QoS Pathfinder [PATHFINDER], an SDNapp based on Network as a Service

paradigm (NaaS) to provide and manage Real-Time Quality of Service (QoS) through an end-to-end network for

real-time applications, adapting the network’s control plane to satisfy the requirements of an application or service

thanks to the use of the standardised OpenFlow interface, which supports basic QoS offerings. The application’s

core is an algorithm called Pathfinder that is responsible for the dynamic demand and on-demand provisioning

of network resources, which takes into account network-wide traffic implications as link state or port stats using

a controller’s counters or a monitoring an SDNapp. A proof of concept of an SDNapp that can work within the

Middleware Framework, it has an interface (RESTful API) that enables communication with the Middleware

Framework, third-party services and users. SDNapps appendix document offers further details of QoS SDNapp

implementation [SDNAPPS].

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

82

E.6.1 QoS SDNapp Proof-of-Concept: Pathfinder Implementation

The Pathfinder SDNapp implementation tries to take advantage of the mechanisms provided by the OpenFlow

protocol. Pathfinder makes use of the ‘slicing’ technique (discussed in SectionD.2.4) to provide QoS as BoD from

an OpenFlow network. It also makes use of a queuing mechanism to push and keep QoS state in the OpenFlow

network that relies on network devices because OpenFlow 1.0 protocol does not provide a queue setting

mechanism. The SDN application can be classified as a Complex SDNapp because it consists on a package of

various atomic SDN apps responsible for a process function that works together to provide QoS on-demand.

Figure E.12 shows the architecture of Pathfinder SDNapp on a SDN architecture.

At the application’s core, the Pathfinder algorithm is responsible for the dynamic demand and on-demand

provisioning of network resources, which takes into account network-wide traffic implications as link state or port

stats using controller’s counters or a monitoring SDNapp.

Figure E.12: QoS SDNapp architecture on a SDN environment

Each atomic SDNapp that forms Pathfinder performs one or more functions inside the app workflow. The next

steps show a proof-of-concept implementation of a first version of the QoS provisioning SDNapp. The initialisation

of the workflow happens on the Core / Main algorithm, where a QoS request is received. In a first approach, the

3rd party Services

Middleware plugins

Application Layer

Forwarding Plane
Network Devices / Resources

Southbound Interface

Control Plane
SDN Controller

Northbound Interface

SDNApp Pathfinder

Middleware Framework

API

Requests Database

TEBD

Core
Process /
Algorithm

Queue Manager

Topology functions

Other
SDNapp

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

83

QoS request is stored on a cache file, where the SDNapp reads its contents. On further versions of the

implementation, SDNapp will be able to load QoS requests through the upper API from the requester service or

application, where QoS requested constraints are specified to achieve a level of QoE. The QoS request contains

critical data such as:

 Single QoS bottleneck attribute: Minimum bandwidth.

 Additional QoS parameters such as packet loss, delay and/or jitter.

 Flow parameters: IP Source, IP Destination, ToS or other OF-matching entry.

The request includes a unique identification code, which is checked on a request log/database. A new ID will

start the Pathfinder process to compute a new QoS path. On the other hand, when the ID is found in the database,

a re-routing process is started for a given flow, meaning that a QoS path cannot achieve a level of QoS and

needs to be changed. Figure E.13 represents this initialisation.

Figure E.13: QoS request reception on SDN application

E.6.2 Pathfinder Real-time Topology Abstraction

The network topology is learnt and built on the Topology Manager by polling the information about network nodes,

links and source-destination attachment points from the SDN Controller. Then, a topology graph as a data

structure computes all feasible paths meeting the processed request. For additional topology stats, network QoS

parameters can be retrieved and evaluated from a Monitor SDNapp if available, e.g. collecting OpenFlow

counters through a switch-port monitoring mechanism. Topology statistics are retrieved from OpenFlow counters

User requester application

Middleware plugins

Northbound Interface

Middleware Framework

Application Layer

API

SDNApp Pathfinder

Other
SDNapp

TEBD

Requests DatabaseCore
Process /
Algorithm

Topology functions

Queue Manager

QoS request

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

84

of each switch, which enables the computation of packet transmission rates, bandwidth, packet errors and packet

drop rates. Then these parameters can be shared with Pathfinder to be assigned as link weights to its

corresponding edge in the topology graph. On the other hand, for some QoS parameters such delay or jitter, use

of third-party applications or hybrid OpenFlow models are necessary.

E.6.3 Path Computation

The core algorithm uses path computation algorithms stored in the traffic engineering database. A common

process for every request is to apply a graph reduction (Step 1) based on an analysis of network links meeting

QoS constraints. Then, the end-to-end connection is checked. Therefore, if connection check succeeded, the

core can operate two subsequent processes upon path requirements (Step 2). The core algorithm applies

selection criteria whether the request demands a path meeting a single or multiple constraints: if a single

constraint is requested, then a path computation algorithm is chosen from the TEBD and applied according the

requested constraint. On the other hand, if multiple constraints are requested for a QoS path, then a weight

aggregation process starts to apply the according path computation algorithm. The current implementation

supports a single QoS constraint based on BoD for a maximum weight path along with minimum hop count.

E.6.4 Path Application

If a feasible QoS path is found, the Pathfinder core communicates with the SDN controller to push the necessary

flow rules into network nodes to create a circuit across the network. It makes use of REST API to dynamically

create flow rules and push flowmod messages to the controller to enable an end-to-end path between two points

on the network. This step will also be responsible to create or dynamically configure port queues to each switch

contained in the QoS path. The current implementation makes use of the Floodlight controller, which uses

OpenFlow protocol version 1.0. Creation of queue and setting its min/max bandwidth cannot be done from

Floodlight controller. All these configurations need to be done out of band and rely on switch capabilities. For

Open vSwitch (current software switch utilised for testing), at least two queues are configured on each switch for

one QoS flow. One queue, called ‘q0’, is responsible of Best Effort traffic in its port without any forwarding

schedule. Instead, another queue, called ‘q1’, is responsible of guarantee a minimum bit-rate for QoS traffic.

Finally, when a QoS path is applied into the network, it is logged in the active QoS paths database along with its

included queues managed by the Queue Manager, shown in Figure E.14.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

85

Figure E.14: QoS path application on Forwarding Plane

E.6.5 Implementation Roadmap

At the moment of writing, SDNapp Pathfinder is under development. As a proof of concept, core modules and

basic functionalities are implemented to provide QoS provisioning. Code is implemented in Python language and

uses JSON notation as data definition language. Current implementation includes next modules:

 Core process Algorithm (Initialisation, Topology graph abstraction, Path Computation, Path Application)

module

 TEBD includes path computation algorithms based on NetworkX libraries:

○ BFS/shortest-path algorithm

○ Custom Adapted Yen’s k-shortest path (AKSP) algorithm

○ Custom Longest/Heaviest path algorithm

 Topology functions module

 Active paths / Request Database log

 Queue Manager module (for Open vSwitch)

On the other hand, current work includes architecture changes, extended functionalities and support:

 Adapter: Entry point for network data and QoS requests. Responsible for gathering necessary information

to process and build proper input for the SDNapp.

 API: SDNapp interface and web service. It will allow checking log data, request information and enable a

web service to send remotely QoS requests.

User requester application

Middleware plugins

Forwarding Plane
Network Devices / Resources

Southbound Interface

Control Plane
SDN Controller

Northbound Interface

Middleware Framework

Application Layer

API

SDNApp Pathfinder

Other
SDNapp

TEBD

Requests DatabaseCore
Process /
Algorithm

Topology functions

Queue Manager1. Push flow rules

2. Push queue

configuration

3. Log active QoS

path

4. Log queue

configuration

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

86

 Computation functions and algorithms module: Critical logic functions and computation algorithms. It will

enable Pathfinder to support additional QoS parameters as delay, jitter or packet-loss, from a single

constraint to multiple constraints computation. New path computation algorithms include:

○ Path length computation

○ AKLP: Adapted k-longest path

○ AKSP: Adapted k-shortest path (rework)

○ ALP: Adapted Longest Path

○ Stats aggregated: Multi-constrained Path problem

 Path Pusher / Queue configuration: Path Application process will be decoupled from the main core

algorithm. It will enable flow rules configuration from obtained output of path computation. Queue

configuration may remain the same.

 GUI: Not defined yet, it may be useful to show topology graph and feasible paths available on network.

Some considerations for future works also include:

OpenFlow 1.3: introduction of meter bands – rate-limiting via meter tables. Use of meter tables instead of queues

consists of meter entries that defines per-flow meters. Per-flow meter entries enable OpenFlow to implement

various simple QoS operations, such as rate-limiting, and can be combined with a per-port queue mechanism to

implement complex QoS frameworks, such as Diff-Serv. A meter measures the rate of packets that are assigned

to its corresponding flow and enables rate control of its packets [OF1.3.0].

E.7 SDNapps and NFV

SDNapps are related to the SDN context, with principal elements:

 Separation of control and forwarding functions (Control and Data Planes)

 Centralisation of control (Control Plane)

 Enable the programmability of the behaviour of the network thanks to well-defined interfaces

Network Functions Virtualisation (NFV) are virtualised functions, not necessarily conditioned to an SDN based

environment. NFVs are highly complementary to the SDNapps, but not dependent on it (and vice-versa). A NFV

can be implemented without any requirement for SDN and any NFV can be achieved using any non-SDN

mechanisms, even though both solutions can be combined. The main goal of the NFVs is to relocate the network

functions from dedicated appliances to generic servers.

SDNapps can provide not only network services, but also resources or capabilities, while NFV applies to ‘low-

level’ related functions, which are very close to Data Plane (even at the packet level). NFVs may be located on

the Control Plane, impacting directly the Data Plane. Instead, SDN operates on the Control Plane to indirectly

impact the Forwarding Plane. Approaches that rely on Control and Data Forwarding Planes’ separation, as SDN

can enhance performance and simplify deployments’ compatibility. NFVs can support SDNapps by providing the

infrastructure upon which they can be deployed.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

87

Alternatively, SDNapps are more focused on the top of the Control Plane, the Application Level. Moreover, an

SDN controller could for instance be consumer of NFVs, e.g.: a NAT virtualized function could be used by the

SDN controller which could make its action over the NAT NFV in such a way that the mapping of Private/public

addressing could be modified.

Differences exist in the scope of the two approaches, where SDN was initially focused on campus and data centre

/ cloud networks while NFVs for Service provider networks. The initial applications for the SDN were Cloud

orchestration and networking, which were expanded by the SDNapps wide range of applications and functions.

However, NFV focuses on network functions such routers, gateways, firewalls, CDN, WAN accelerators, etc.

E.8 Conclusions

SDN can be seen as a Middleware layer that enables applications to be deployed on the northbound side and

communicate to the network via the southbound. An SDNapp environment is a networking scenario where

applications allow users to adapt network environments to meet their needs, an approach similar to Application-

defined networking (ADN) model, which implements software applications to enable dynamic management of

network resources. SDNapps offer an increased value to the SDN thanks to many of its key benefits such as

costs reductions and new monetisation opportunities, but also for its simplified deployment, control, manageable

and customisable network services.

To achieve an SDNapp environment, SDN applications need a point of interconnect between network software

and infrastructure through application-program interfaces (APIs), and this point is where SDN is found lacking

solutions at present. Most known SDN controllers (NOX, POX, Floodlight, Beacon, Ryu, ODL, etc.) offer their

own high-level set of SDN and distributed systems libraries, and their own northbound API, upon which an

application ecosystem could be built, but each controller has its own set of interfaces (RPC, RESTful, etc.) and

interconnections, and without any common set of abstractions to work from, software developers have no

guarantee that their apps will be portable across a wide range of SDN environments, with many controllers on it.

Networks need to become agile and deployed services must be delivered and perform optimally across networks’

domains without compromising on portability. While there has been some discussion around northbound APIs

standardisation, the ONF has clarified that a standard for northbound APIs is not being formalised at this time.

ONF believes that no single northbound interface will serve all use cases and environments. Until now, the

industry is providing APIs that developers can write to, but those applications cannot be moved between systems.

Any standard for northbound APIs may limit and stem innovation and users' implementation.

A potential solution is a Middleware framework that allows applications to be plugged and unplugged according

to their needs, rather than adjusting each application and infrastructure repeatedly to get a service running. In

addition, a Middleware framework could act as an adapter, where multiple-vendor SDNapps may be able to

communicate to a single controller, thanks to an open northbound interface that interconnects the framework to

the users. This means that users would build their own applications and deliver features they need. There is a

wide range of possibilities that can be addressed by the Middleware framework. Furthermore, this allows

customisation of customers’ network controllers and services, as shown by the Cyan’s Blue Planet SDN Platform,

a proprietary framework [CYAN] and OpenNaaS. Finally, progress on the abstraction and API front is needed,

and a Middleware framework for an SDNapp ecosystem can help avoid a very difficult application environment

in the SDN.

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

88

References

[Arbor] Arbor Networks, Cisco Catalyst 6500 Supervisor 2T/Peakflow SP Interoperability Testing,

http://www.arbornetworks.com/component/docman/doc_download/556-arbor-peakflow-sp-

cisco-catalyst-6500-supervisor-2t-interoperability-testing

[BIG-2013] Big Switch Networks, Open SDN for Network Visibility, July 2013,

http://www.bigswitch.com/sites/default/files/sdnresources/monitoringfabric.pdf

[CIS-2014] Cisco IOS NetFlow, http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-

netflow/index.html

[CIS-2014a] Cisco Solution Brief, Cisco Extensible Network Controller with Monitor Manager Solution:

Increase Network Traffic Visibility, Cisco 2014,

http://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/extensible-

network-controller-xnc/solution-overview-c22-729753.pdf

[CLWATCH] Seungwon Shin and Guofei Gu."CloudWatcher: Network Security Monitoring Using OpenFlow

in Dynamic Cloud Networks."" Oct 2012.

http://people.tamu.edu/~seungwon.shin/Cloudwatcher.pdf"

[CSP2P] OGF. NSI Connection Services P2P v2.0 WSDL schema. https://code.google.com/p/ogf-nsi-

project/source/browse/trunk/ConnectionService/ogf_nsi_services_p2p_v2_0.xsd

[CTv2.0] OGF. NSI Connection Types v2.0 WSDL schema, https://code.google.com/p/ogf-nsi-

project/source/browse/trunk/ConnectionService/ogf_nsi_connection_types_v2_0.xsd

[CYAN] http://www.cyaninc.com/products/blue-planet-sdn-platform

[CQUE] JRA2T1 internal document ‘Cloud questionnaire’,

https://intranet.geant.net/JRA2/T1/Documents/Cloud%20support/SDN_Cloud_SupportQuestion

ary_Brainstorming_final.docx?Web=1

[DEFENSE4ALL] https://wiki.opendaylight.org/view/Defense4All:Tutorial

[DIFFERENCE1] http://blog.sflow.com/2013/10/embedding-sdn-

applications.html?goback=%2Egde_4359316_member_278199095#%21

[DOVE] R. Recio, "Distributed Overlay Virtual Ethernet (DOVE) Networks" (2012) Available from

http://www.ethernetsummit.com/English/Collaterals/Proceedings/2012/20120222_2-

103_Recio.pdf"

[DPKT] DPKT library https://code.google.com/p/dpkt/

[DREAMER] DREAMER: https://intranet.geant.net/JRA0/DREAMER/SitePages/Home.aspx

[ESnet] Energy Sciences Network https://www.es.net/about/

[ETSINFV] Network Functions Virtualisation website at ETSI, http://www.etsi.org/technologies-

clusters/technologies/nfv

[EXT-2013] www.extrahop.com, ExtraHop-Arista Persistent Monitoring Architecture for SDN,

http://www.extrahop.com/wp-content/uploads/2013/08/ExtraHop-Arista-Datasheet-1.pdf

[EXT-2014] Extreme Networks, Advanced Features, ExtremeXOS 15.5 User Guide, 120936-00, April 2014,

San Jose, CA, USA, Advanced_Features.pdf

[EXT-2014a] Extreme Networks, ExtremeXOS Release Notes, Software Version ExtremeXOS

15.5.2-Patch1-1, 120935-00 Rev 06, August 2014.

[FELIX] http://www.ict-felix.eu/

http://people.tamu.edu/~seungwon.shin/Cloudwatcher.pdf
http://www.cyaninc.com/products/blue-planet-sdn-platform
https://code.google.com/p/dpkt/
http://www.extrahop.com/wp-content/uploads/2013/08/ExtraHop-Arista-Datasheet-1.pdf
http://www.ict-felix.eu/

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

89

[Flood1] http://www.slideshare.net/patrickhuang712/floodlight-overview-performance-comparison-by-

patrick-huang

[FSFW] Flowspace firewall website, http://globalnoc.iu.edu/sdn/fsfw.html

[FV] FlowVisor website, https://github.com/OPENNETWORKINGLAB/flowvisor/wiki

 Also Ali Al-Shabibi and Rob Sherwood. "FlowVisor."

https://github.com/OPENNETWORKINGLAB/flowvisor

[GÉANT] http://www.geant.net/Pages/default.aspx

[GIO-2014] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, V. Maglaris, Combining OpenFlow

and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN

environments, Computer Networks, Volume 62, April 7, 2014, Elsevier, pp. 122-136,

http://www.sciencedirect.com/science/article/pii/S1389128613004003

[GOCX] gOCX, https://intranet.geant.net/JRA1/T2/Documents/draft-gn3plus-ocx-architecture-v08.1.pdf

[GOCXMOV] gOCX movie,

https://intranet.geant.net/JRA1/T2/Documents/Demo_TNC14/JRA1T2_GEANT_ocx.mov

[HNX] Helix Nebula (HN), http://www.helix-nebula.eu/

[HOG-2013] Scott Hogg, Using SDN to Create a Packet Monitoring System, NetworkWorld, Dec. 15, 2013,

http://www.networkworld.com/article/2226003/cisco-subnet/using-sdn-to-create-a-packet-

monitoring-system.html

[HP-2013] Hewlett Packard Development Company, L.P., HP 5920 & 5900 Switch Series, Network

Management and MonitoringConfiguration Guide, Part number: 5998-2900, Software version:

ESS2305, Document version: 5W100-20130830

[HP-2012] Hewlett Packard, HP Switch Software (3500 switches, 3500yl switches), OpenFlow

Supplement, Software version K.15.06.5008, February 2012.

[HP-2013] Hewlett Packard, HP 5920 & 5900 Switch Series OpenFlow Configuration Guide, Part number:

5998-4680, Software version: ESS2305, Document version: 5W100-20130830, 2013.

[HP-2013a] Hewlett Packard, HP 5920 & 5900 Switch Series Fundamentals Configuration Guide, Part

number: 5998-2891, Software version: ESS2305, Document version: 5W100-20130830, 2013.

[HP-2013b] Hewlett Packard, HP 5920 & 5900 Switch Series ACL and QoS Configuration Guide, Part

number: 5998-2897, Software version: ESS2305, Document version: 5W100-20130830, 2013.

[HP-2013c] Hewlett Packard, HP Switch Software OpenFlow Administrator's Guide K/KA/WB 15.14 (for HP

Switch 3500 series), HP Part Number: 5998-4400, Published: October 2013, Edition: 2.

[HP-2014] Hewlett Packard, HP 5920 & 5900 Switch Series OpenFlow Command Reference, Part

number: 5998-4679, Software version: Release 2307, Document version: 6W100 20140108,

2013.

[HPAPPs] Get Started Developing SDN apps now brochure.

http://h17007.www1.hp.com/docs/sdn/HP_SDN-SDK_brochure-1767-4234.pdf

[I2AL] http://www.internet2.edu/products-services/advanced-networking/layer-2-services/#service-

features

[I2VS] https://www.sdncentral.com/news/internet2-virtualizes-network-backbone/2014/10/

[ICmyNet.Flow] ICmyNet.Flow http://www.icmynet.com/products/icmynet.flow/overview.html

[Internet2] http://www.internet2.edu/about-us/

[IPFIX] IETF IPFIX WG Documents, http://datatracker.ietf.org/wg/ipfix/

[IPFIX-e] IP Flow Information Export (IPFIX) Entities, IANA,

http://www.iana.org/assignments/ipfix/ipfix.xhtml

[ITU-T] http://www.itu.int/en/ITU-T/Pages/default.aspx

https://github.com/OPENNETWORKINGLAB/flowvisor/wiki
http://www.sciencedirect.com/science/article/pii/S1389128613004003
https://intranet.geant.net/JRA1/T2/Documents/draft-gn3plus-ocx-architecture-v08.1.pdf
http://www.iana.org/assignments/ipfix/ipfix.xhtml

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

90

[JUN-2014] Juniper Technical Documentation, Show OpenFlow Statistics Flows, January 9, 2014,

http://www.juniper.net/techpubs/en_US/junos13.3/topics/reference/command-summary/show-

openflow-statistics-flows.html.

[JUN-2014a] OpenFlow support on devices running Junos OS, Juniper TechLibrary, September 29, 2014,

http://www.juniper.net/documentation/en_US/release-

independent/junos/topics/reference/general/junos-sdn-openflow-supported-platforms.html

[LINF] Linux Foundation Collaborative Projects, http://collabprojects.linuxfoundation.org

[MCG-2013] Shamus McGillicuddy, Microsoft Uses OpenFlow SDN for Network Monitoring and Analysis,

April 17, 2013, http://searchsdn.techtarget.com/news/2240181908/Microsoft-uses-OpenFlow-

SDN-for-network-monitoring-and-analysis

[MngEng] ManageEngine http://www.manageengine.com/products/netflow/help/installation/setup-cisco-

netflow.html

[NETIDE] http://www.netide.eu/

[NSF] Roberts, G., Kudoh, T., Monga, I., Sobieski, J., MacAuley, J. and Guok, C., 2014. Network

Service Framework v2.0 (draft). Open Grid Forum.

[NSI-CS] Roberts, G., Kudoh, T., Monga, I., Sobieski, J., MacAuley, J. and Guok, C., 2014. NSI

Connection Service Protocol v2.0 (draft). Open Grid Forum.

[NFV] http://etsi.org/technologies-clusters/technologies/nfv

[NFv5] NetFlow Export Datagram Format, Cisco Systems,

http://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-

6/user/guide/format.html

[NFv9] NetFlow Version 9 Flow-Record Format, Cisco Systems,

http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800

a3db9.html

[NF-wiki] NetFlow, Wikipedia: http://en.wikipedia.org/wiki/NetFlow

[NS-blog] Openflow: Proactive vs Reactive Flows, NetworkStatic, Brent Salisbury’s Blog,

http://networkstatic.net/openflow-proactive-vs-reactive-flows/

[NIST] NIST, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[ODL] http://www.opendaylight.org/project/technical-overview

[OF1.0.0] OpenFlow Switch Specification Version 1.0.0,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.0.0.pdf

[OF1.0.0] OpenFlow Switch Specification Version 1.0.0,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.0.0.pdf

[OF1.1.0] OpenFlow Switch Specification Version 1.1.0

 https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.1.0.pdf

[OF1.3.0] https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.3.0.pdf

[OF1.4.0] OpenFlow Switch Specification Version 1.4.0,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.4.0.pdf

[OF2.0] P4-Programming Protocol Independent Packet Processor - http://arxiv.org/pdf/1312.1719v3.pdf

http://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/junos-sdn-openflow-supported-platforms.html
http://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/junos-sdn-openflow-supported-platforms.html
http://www.manageengine.com/products/netflow/help/installation/setup-cisco-netflow.html
http://www.manageengine.com/products/netflow/help/installation/setup-cisco-netflow.html
http://www.netide.eu/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

91

[OFSEC] OpenFlow security traffic redirection solutions, JRA2T1 internal document,

https://intranet.geant.net/JRA2/T1/Documents/Security/Openflow_security_traffic_redirection_s

olutions_final.docx?Web=1

[ONF] Open Networking Foundation, http://www.opennetworking.org

[ONF1] Software-Defined Networking: The New Norm for Networks, ONF White paper. April 2012.

Available from https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-

papers/wp-sdn-newnorm.pdf

[ONF-WP] ONF White Paper: “Software-Defined Networking: The New Norm for Networks”,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-

sdn-newnorm.pdf

[OPENDOVE] https://wiki.opendaylight.org/images/5/5a/Open_DOVE_for_OpenDaylight_tech_v2.pdf

[OPENFLOW 1.3] OpenFlow Specification Version 1.3.0,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.3.0.pdf`

[OPENNAAS] http://opennaas.org/

[OPENNEBULA] http://opennebula.org/

[OVX] OpenVirteX website, http://ovx.onlab.us

[OWNCLOUD] http://owncloud.org/

[PAT-2010] Michael Patterson, Comparing SNMP to NetFlow, http://www.lovemytool.com¬/blog/-

2010/06/comparing-snmp-to-netflow-by-michael-patterson.html, June 27, 2010.

[PATHFINDER] Daniel Guija Alcaraz, “Control and management for Real-Time SDN Quality of Service”, i2CAT,

UPC BarcelonaTech. Available from http://hdl.handle.net/2099.1/22178

[PLI-2009] Scalability and Accuracy of Packet Sampling, http://blog.sflow.com/2009/05/scalability-and-

accuracy-of-packet.htm, May 18, 2009.

[PLI-2011] Plixer International, delay and Stability, May 22, 2011, http://blog.sflow.com/2011/05/delay-and-

stability.html.

[PLI-2013a] Plixer International, OpenFlow vs. NetFlow, http://www.plixer.com/blog/netflow/openflow-vs-

netflow/, January 9, 2013.

[PLI-2013b] Plixer International, Rapidly detecting large flows, sFlow vs. NetFlow/IPFIX,

http://blog.sflow.com/2013/01/rapidly-detecting-large-flows-sflow-vs.html.

[PLI-2013c] Plixer International, SDN and Delay, January 7, 2013, http://blog.sflow.com/2013/01/sdn-and-

delay.html.

[Plix] Plixer Blog: IP flow-cache timeout active – Are you using it?,

http://www.plixer.com/blog/network-problem-resolution/ip-flow-cache-active-timeout-are-you-

using-it/

[POW-2012] Adam Powers, NetFlow vs. sFlow for Network Monitoring and Security: The Final Say],

http://www.plixer.com/blog/netflow/netflow-vs-sflow-for-network-monitoring-and-security-the-

final-say/, August 27, 2012.

[REA-2013] Brook Reams, Campus Network Solution, Best Practice-sFlow Monitoring for Brocade

Products, May 20, 2013, http://community.brocade.com/t5/Design-Build/Campus-Network-

Solution-Best-Practice-sFlow-Monitoring-for/ta-p/36688.

[REE-2008] Brad Reese, NetFlow or sFlow: Which is the open standard?, Cisco,

http://www.networkworld.com/article/2350352/cisco-subnet/netflow-or-sflow--which-is-the-open-

standard-.html, January 10, 2008.

http://opennaas.org/

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

92

[RFC-3176] P. Phaal, S. Panchen, N. McKee, InMon Corporation's sFlow: A Method for Monitoring Traffic

in Switched and Routed Networks, September 2001, available from

http://www.ietf.org/rfc/rfc3176.txt.

[RFC-3410] J. Case, R. Mundy, D. Partain, B. Stewart, Introduction and Applicability Statements for Internet

Standard Management Framework, https://tools.ietf.org/rfc/rfc3410.txt.

[RFC-5101] B. Claise, Ed., Specification of the IP Flow Information Export (IPFIX) Protocol for the

Exchange of IP Traffic Flow Information, January 2008, http://tools.ietf.org/html/rfc5101.

[RFC-5102] J. Quittek, S. Bryant, B. Claise, P. Aitken, J. Meyer, Information Model for IP Flow Information

Export, January 2008.

[ROADM] ROADMs: http://searchtelecom.techtarget.com/definition/ROADM-reconfigurable-optical-add-

drop-multiplexer

[RYU] Ryu controller http://osrg.github.io/ryu/

[RYU1] http://www.slideshare.net/yamahata/ryu-sdnframeworkupload

[Ryu-Doc] Ryu controller documentation http://ryu.readthedocs.org/en/latest/

[SDEC] MacAuley, J., 2013. NSI-CS Service Decoupling.

<https://redmine.ogf.org/dmsf_files/13101?download=>

[SDN] SDN: Software Defined Networks, Chapter 2. Published by O'Reilly Media. August 2013.

 Also

http://www.opennetworking.org/sdn-resources/sdn-definition

[SDNAPPS] https://intranet.geant.net/JRA2/T1/Documents/Traffic%20Engineering/SDNapps-

final.docx?Web=1

[SDNappex1] http://searchsdn.techtarget.com/news/2240164400/New-HP-SDN-portfolio-Controller-switches-

and-network-apps#

[SDNappex2] http://searchsdn.techtarget.com/tip/How-SDN-applications-will-change-Layer-4-7-network-

services#

[SDNappex3] https://www.sdncentral.com/news/need-sdn-applications-developed/2013/10/

[SDNDEF1] http://searchsdn.techtarget.com/definition/SDN-application-software-defined-networking-

application

[SDNRG] Software-Defined Networking Research Group (SDNRG), https://irtf.org/sdnrg

[SEFLOOD] SE-Floodlight on OpenFlowSec.org http://www.OpenFlowsec.org/

[SFL-2004] Peter Phaal, Marc Lavine, sFlow Version 5, http://sflow.org/sflow_version_5.txt, July 2004.

 http://www.sflow.org/about/index.php.

[SIEN] http://meetings.internet2.edu/media/medialibrary/2014/10/20/20141030-przywecki-sdn-in-

ren.pdf

[STv2.0] OGF. NSI Service Types v2.0 WSDL schema.

[SURVEY] SDN/NFV and Clouds:

https://docs.google.com/forms/d/1mljt1sp4ufTV7AQmTSpolhXgN1ftBnIMDs7Yf3a6TqQ/viewfor

m

[SYNNEFOPYTHOS] https://services.grid.am/astakos/ui/landing

[TC2013] TERENA Compendium 2013, http://www.terena.org/publications/files/TERENA-Compendium-

2013.pdf

[VERTIGO] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, E. Salvadori, "VeRTIGO: network

virtualization and beyond", EWSDN 2012.

[XIFI] XiFi website, https://fi-xifi.eu/home.html

http://ryu.readthedocs.org/en/latest/
http://searchsdn.techtarget.com/news/2240164400/New-HP-SDN-portfolio-Controller-switches-and-network-apps
http://searchsdn.techtarget.com/news/2240164400/New-HP-SDN-portfolio-Controller-switches-and-network-apps
http://searchsdn.techtarget.com/tip/How-SDN-applications-will-change-Layer-4-7-network-services
http://searchsdn.techtarget.com/tip/How-SDN-applications-will-change-Layer-4-7-network-services
https://www.sdncentral.com/news/need-sdn-applications-developed/2013/10/
http://searchsdn.techtarget.com/definition/SDN-application-software-defined-networking-application
http://searchsdn.techtarget.com/definition/SDN-application-software-defined-networking-application
http://www.sflow.org/about/index.php
https://fi-xifi.eu/home.html

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

93

[XNETMON] Fernandes N.C., Duarte O.C.M.B. XNetMon. A Network Monitor for Securing Virtual

Networks.[C].Communications (ICC), 2011 IEEE International Conference on 2011IEEE,265-

271

[Y3300] Y.3300 : Framework of software-defined networking, https://www.itu.int/rec/T-REC-Y.3300-

201406-I/en

https://www.itu.int/rec/T-REC-Y.3300-201406-I/en
https://www.itu.int/rec/T-REC-Y.3300-201406-I/en

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

94

Glossary

AA Authentication and Authorisation

aCSP academic Cloud Service Provider

ACL Access Control List

ADN Application Defined Networking

AG Aggregator

AKLP Adapted k-longest path

AKSP Adapted k-shortest path

ALP Adapted Longest Path

API Application Programming Interface

ARP Address Resolution Protocol

B2B Business to Business

BCC Building Cloud Competencies

BFD Bidirectional Forwarding Detection

BoD Bandwidth on Demand

BW BandWidth

capex capital expenditure

CCM Continuity Check Messages

CEF Cisco Express Forwarding

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRUD Create Read Update and Delete

CSP Cloud Service Provider

DCN Data Centre Network

DDoS Distributed Denial of Service

E2E Exchange to Exchange

EAA Embedded Automation Architecture

ETSI European Telecommunications Standards Institute

FDB Forwarding DataBase

FI-PPP Future Internet Public Private Partnership

FSPF Fabric Shortest Path First

FSFW Flowspace FireWall

FV FlowVisor

GN3plus GÉANT Network 3 plus (GN3plus)

GOFF GÉANT OpenFlow Facility

gOCX GÉANT Open Cloud Exchange

GTS Global Task Scheduling

GUI Graphical User Interface

HD High Definition

HDD Hard Disk Drive

HNX Helix Nebula

HPC High Performance Computing

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

95

HW HardWare

IaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

IDS Inter-Domain Controller

IPS Intrusion Prevention System

IPv4 Version 4 of the Internet Protocol (StB IETF)

IPv6 Version 6 of the Internet Protocol (StB IETF)

IXP Internet eXchange Point

IPFIX Internet Protocol Flow Information Export

IPMI Intelligent Platform Management Interface

IRTF Internet Research Task Force

JRA2 Joint Research Activity 2

JVM Java Virtual Machine

KPI Key Performance Indicators

LINF Linux Foundation

MAC Media Access Control

MPLS Multi-Protocol Label Switching

MSDP Multicast Source Discovery Protocol

MTL Message Transport Layer

MX Mail eXchanger

NaaS Network as a Service

NAT Network Address Translation

NE Network Element

NETCONF Network Configuration Protocol

NFV Network Functions Virtualization

NML Network Markup Language

NMS Network Management System

NOC Network Operations Centre

NQA Network Quality Analyser

NREN National Research and Educational Network

NRM Network Resource Manager

NSA Network Service Agent

NSF Network Service Framework

NSI Network Service Interface

NSI-CS Network Service Interface-Connection Service

OAM Operations, Administration and Management

OCF OFELIA Control Framework

OCX Optical Cross-Connect

ODL OpenDaylight

OF Open Flow

OF2NF OpenFlow to NetFlow

OGF Open Grid Forum

ONF Open Networking Foundation

opex Operational Expenditure

OSGi Open Source Gateway Initiative

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

96

OSI Open Systems Interconnection

OSPF Open Shortest Path First

OVS Open vSwitch

OVX OpenVirteX

PoC Proof of Concept

PoP Point of Presence

P2P Point to Point

PaaS Platform as a Service

pCSP public Cloud Service Provider

QoE Quality of Experience

QoS Quality of Service

REN Research and Educational Network

REST REpresentational State Transfer

RMON Remote Network Monitoring

RPC Remote Procedure Call

SaaS Software as a Service

SDA Service Definition Agreement

SDK Software Development Kit

SDN Software-Defined Networking

SDNRG Software-Defined Networking Research Group

SDNtrap SDN Traffic Redirection Application

SDO Standard Development Organization

SME Subject Matter Expert

SoTA State of the Art

STP Service Termination Points

JRAnTm Joint Research Activity n Task m

TCP/UDP Transmission Control Protocol / User Datagram Protocol

TEBD Time-Evolving Block Decimation

TTP Trusted Third-Party Service

UDP User Datagram Protocol

UI User Interface

uRA Ultimate Requester Agent

uPA Ultimate Provider Agent

URN Uniform Resource Name

VLAN Virtual Local Area Network

VM Virtual Machines

VPS Virtual Private Server

XML Extensible Markup Language

XSD XML Schema Definition

Deliverable D13.1 (DJ2.1.1)
Specialised Applications’ Support
Utilising OpenFlow/SDN

Document Code: GN3PLUS-14-1233-26

97

