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Abstract 

The DREAMER project had the objective of developing and exploiting Software Defined Networking (SDN) capability in carrier 

grade IP backbones.  DREAMER focused and delivered results on how a network based on an OpenFlow/SDN control plane 

can provide the same functionalities of an IP/MPLS control plane, offering a carrier grade approach to resiliency and fault 

management. 

DREAMER has developed software, performed testing and achieved results in three main areas of OpenFlow/SDN research: 

data plane, control plane and experimental tools. Concerning the Data Plane, a hybrid IP and SDN networking approach has 

been considered. A solution called “OSHI” (Open Source Hybrid IP / SDN networking) has been designed and implemented 

over Linux OS. As for the Control Plane, the project exploited and contributed to the development of the ONOS Open Source 

controller, with a solution to distribute the control of a geographical scale SDN network among a set of clusters of ONOS 

controllers. The solution is called “ICONA” (Inter Cluster ONos Application). As for the experimental tools, DREAMER has 

developed and released Mantoo (Management tools) that provides an easy design, deployment and control of the SDN 

experiments. It Includes a web front end called “Topology 3D” (Topology Designer, Deployer & Director) that allows to 

graphically design a network topology (made of L3 routers, L2 switches, end devices) and to configure the set of services to 

be provided on top. 

DREAMER has implemented prototypes of the proposed solutions based on Open Source tools and has contributed to the 

development of some of these tools. Therefore DREAMER is having an impact towards the availability of a truly open 

ecosystem for carrier grade backbone IP networks based on the SDN paradigm. DREAMER has produced results than can 

be used by the NRENs and the GÉANT backbone when planning future upgrades. The software has been released as Open 

Source.
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Executive Summary 

This document represents the final report of the DREAMER project, one of the beneficiary projects of 

the GÉANT Open Call research initiative. Its partners are the CNIT research consortium (www.cnit.it), 

the CREATE-NET research center (www.create-net.org) and the GARR consortium, the Italian NREN 

(www.garr.it). The DREAMER project started in November 2013 and ended in March 2015, according 

to its work plan it has produced a set of internal milestone documents describing the requirements, 

the architecture and the software prototypes. The purpose of this document is to collect all the 

relevant information produced by the project in a single publicly available document. 

The DREAMER project had the objective of developing and exploiting Software Defined Networking 

(SDN) capability in carrier grade IP backbones. DREAMER focused and produced results on how a 

network based on an OpenFlow/SDN control plane can provide the same functionalities of an IP/MPLS 

control plane, offering a carrier grade approach to resiliency and fault management. 

The requirements for the DREAMER project have been analyzed as reported in section 2. DREAMER 

considered the operational requirements coming from the GARR National Research and Education 

Network (NREN) to drive the design of the solutions.  

The DREAMER project had two main dimensions: scientific and experimental. The scientific dimension 

considered a resilient SDN system able to smoothly operate in case of link and node failures, by 

providing resiliency to the controller element and by promptly restoring paths in the data plane. The 

experimental dimension implemented and validated the designed modules over the testbed facilities 

provided by GÉANT.  

The project developed software, performed testing and achieved results in three main areas of 

OpenFlow/SDN research: data plane, control plane and experimental tools, which are respectively 

dealt with in sections 3, 5 and 4. 

Concerning the Data Plane (activities described in section 3), hybrid IP and SDN networking has been 

considered. A solution called “OSHI” (Open Source Hybrid IP / SDN networking) has been designed 

and implemented over Linux OS. An OSHI node combines traditional IP forwarding/routing (with OSPF) 

and SDN forwarding implemented by means of Open vSwitch in a hybrid IP/SDN node. No open source 

solutions for such a hybrid node were available before. As services to be offered to the customers, 

DREAMER considered IP point to point Virtual Leased Lines (VLL), Layer 2 Pseudo Wires (PW) and Layer 

2 Virtual Switches over an IP backbone. These services are implemented with virtual circuits which 

have been denoted as “SBP”, for SDN Based Paths. The SBPs are established by the centralized SDN 

Controllers. 
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Two approaches have been designed and implemented for the SBPs. The first approach is based on 

VLAN tags, it has some limitations in terms of scalability and interoperability with legacy equipment, 

but it can be implemented using OpenFlow 1.0 compliant equipment. The second approach is based 

on MPLS tags, it does not suffer from scalability issues and can better interoperate with legacy 

equipment, but it requires OpenFlow 1.3. The section 3 of this report provides the detailed design of 

the OSHI solution, a discussion on alternative design approaches and some considerations on the 

potential evolution of OpenFlow standards and equipment capability. The performance evaluation of 

the implemented solutions for the data plane are reported in section 4. 

The activities related to the Control Plane are described in section 5, the project exploited and 

contributed to the development of the ONOS Open Source controller [2]. Thanks to an agreement 

with ON.LAB (a research lab on SDN based in San Francisco), the DREAMER project partners were able 

to work on the ONOS source code before it was released to the general public (which happened on 

December 2014 [4]). The default ONOS features provide data plane resilience, as well as control plane 

resilience for a single cluster of controllers in the same data center. The contribution of the project is 

a solution to distribute the control of a geographical scale SDN network among a set of clusters of 

ONOS controllers. The solution is called “ICONA” (Inter Cluster ONos Application). Section 5 includes 

the results of experimental tests aimed at comparing ICONA with a standard ONOS setup, and 

evaluating the performance of the two solutions in an emulated environment. 

As for the experimental tools (see section 4), DREAMER has developed and released Mantoo 

(Management tools) that provides an easy design, deployment and control of the SDN experiments. 

It Includes a web front end called “Topology 3D” (Topology Designer, Deployer & Director) that allows 

to graphically design a network topology (made of L3 routers, L2 switches, end devices) and to 

configure the set of services to be provided on top. Then the topology can be automatically deployed 

as an overlay network over a distributed testbed (e.g. the GÉANT testbed) or within a Mininet 

emulator. Finally, the web front end allows to access the shell interface on each node of the deployed 

topology. The Mantoo experimental tools have been used to gather performance measurements of 

some aspects related to the data plane (OSHI) solution as described in sections 4.2. 

DREAMER has implemented prototypes of the proposed solutions based on Open Source tools and 

has contributed to the development of some of these tools (the details about software installation 

and use are reported in appendix). The software developed by the DREAMER project has been 

released as Open Source, under the terms of the Apache 2.0 license. Therefore DREAMER is having an 

impact towards the availability of a truly open ecosystem for carrier grade backbone IP networks 

based on the SDN paradigm. DREAMER has produced results than are available and can be used by 

the NRENs and the GÉANT backbone when planning future upgrades. The software has been released 

as Open source. 
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1 Introduction 

Software Defined Networking (SDN) [12] is proposed as the new paradigm for networking that may 

drastically change the way IP networks are run today. Important applications have been found in Data 

Centers and in corporate/campus scenarios and there have been several proposals considering SDN 

applicability in wide area IP networks of large providers. Considering the wide area IP networks use-

case, critical open issues are: 

(i) how to provide the scalability and fault tolerance required in operators’ environments; 

(ii) how to cope with the high latency in the control plane (due to a geographically distributed 

deployment). 

More generally, the scientific and technological question “what is the best approach to introduce SDN 

in large-scale IP Service Providers (ISP) networks?” is definitely still open and different solutions have 

been proposed, A complete and definitive answer to this question needs to consider data plane and 

control plane aspects. 

The OSHI (Open Source Hybrid IP/SDN) networking architecture, addresses the above question from 

the point of view of data plane. The DREAMER project has designed the OSHI and provided an Open 

Source reference implementation complemented with a set of services (IP Virtual Leased Lines, 

Ethernet Pseudo-Wirese and Virtual Switches, that will be described in section 3) and a set of 

management tools for performing experiments (described in section 4).  

As for the control plane, its reliability, scalability and availability were among the major concerns 

expressed by Service and Cloud Providers since the beginning of the Software Defined Networking 

(SDN) revolution. Existing deployments show that standard IP/MPLS networks natively offer fast 

recovery in case of failures. Their main limitation lies in the complexity of the distributed control plane, 

implemented in the forwarding devices. IP/MPLS networks fall short when it comes to design and 

implementation of new services that require changes to the distributed control protocols and service 

logic. The SDN architecture, that splits data and control planes, simplifies the introduction of new 

services, moving the intelligence from the physical devices to a Network Operating System (NOS), also 

known as controller, that is in charge of all the forwarding decisions. As the NOS cannot introduce a 

single point of failure in production environments, it is usually considered logically centralized. In 

practical terms, it needs to be replicated to provide the required resiliency. The DREAMER project 

starts from the resiliency solution provided by the ONOS controller, which implements a cluster of 

controllers. This solutions works well when the cluster of controllers resides in a single data center 

and it is not able to properly synchronize remote controller instances. The proposed ICONA (Inter 
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Cluster ONos Application) solution considers a set of clusters of ONOS controllers. The controllers in 

each cluster are in the same data center, but the different clusters are geographically distributed. 

The main contributions of DREAMER are listed hereafter. Items 1 to 3 are related to data plane aspects 

of SDN integration in ISP networks. Items 4 and 5 concern the emulation platform and its management 

tools. Item 6 is about performance assessment. 

1. Design of a hybrid IP/SDN architecture called Open Source Hybrid IP/SDN (OSHI). 

2. Design and implementation of an OSHI node made of Open Source components. 

3. Analysis of extensions to the OpenFlow protocol and to hardware/software switches to 

optimize the support the proposed architecture. 

4. Design and implementation of the ICONA (Inter Cluster ONos Application) solution to control 

a large scale geographical network with a set of clusters of ONOS controllers. 

5. Design and implementation of an open reference environment to deploy and test the OSHI 

framework and the services developed on top of it. 

6. Design and implementation of a set of management tools for the emulation platforms, called 

Mantoo. 

7. Evaluation of some performance aspects of the proposed architecture and its implementation. 

 

The source code of all the components of the prototypes developed by DREAMER is freely available 

at [26] (OSHI and Mantoo) and [52] (ICONA). In order to ease the initial environment setup, several 

components have also been packaged in a ready-to-go virtual machine, with pre-designed example 

topologies up to 60 nodes. To the best of our knowledge, there is no such hybrid IP/SDN node available 

as Open Source software, nor such an emulation platform with a comprehensive set of management 

tools. 
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2 Requirement analysis: Carrier Grade 
Requirements and Research and Education 
Networks 

The objective of the DREAMER proposal is to investigate and prototype how a network based on the  

OpenFlow/SDN control plane can provide the same functionalities of an IP/MPLS control plane, 

offering a “carrier grade” approach to resiliency and fault management. 

Most NRENs and the GÉANT backbone introduced the MPLS protocol in the operation of their IP-based 

networks. The main functionalities considered are the possibility to do traffic engineering and the 

creation of virtual circuits, including at Layer 2 to provide VPN services.  

The NRENs and GÉANT networks are largely over provisioned and Traffic engineering is seldom used. 

The request for VPNs has instead constantly increased during the last years. Multi Domain VPNs are 

particularly suited to the large number of Research and Education domains and projects in Europe. A 

MD-VPN service has been recently brought into service [5]. For this reason the Traffic Engineering 

aspects will be taken into account with lower priority in the DREAMER project. The designed 

architecture will offer the capability of doing traffic engineering, but the design and implementation 

of specific algorithms and solution will be out of the scope of the DREAMER project. 

The SDN paradigm and the OpenFlow protocol may provide a simplification in control plane and their 

main advantage lies in the flexibility and “openness” of the approach: adding a new service or feature 

can be a matter of software engineering, and may not be limited to protocols/capabilities of the 

existing hardware; vendor lock-in issues could be avoided or reduced. 

This section of the document elaborates on the carrier grade requirements for NREN networks and 

considers their implication for an SDN/OpenFlow implementation to side and eventually replace the 

MPLS technology in the NRENs and GÉANT networks.  

2.1 The NRENs and the GÉANT networks 

Research and education networking in Europe is organised in a hierarchical fashion, connecting 

research and education community users. The network connection between two end users will be 

provided by a chain of several networks, each connected to the next. This chain will typically start with 
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a campus network, then may include a regional network before connecting to a national (NREN) 

network. Then to the pan-European backbone GÉANT, from there to another NREN and so on back 

down the chain to the user at the other end. Most of international connectivity is provided through 

GÉANT. Connectivity to General Internet is often local to each country, only some NRENs use the  

GÉANT DWS service to access Internet providers. 

The networks are used by tens of millions of users for all purposes and are required to perform to high 

quality standards for reliability and performance. 

2.1.1 GÉANT 

The GÉANT [1] network topology is shown in Figure1. The topology is based on a large core of leased dark 

fibers and a set of circuits. The physical topology has been carefully chosen to avoid or minimize any shared 

path between fibers. The optical data plane is based on INFINERA equipment, with up to 100 Gbps for each 

wavelength and a maximum of 500Gbps for each direction in an optical node. The switching equipment is 

based on Juniper equipment. 

The offered network service include to provide point to point circuits at all layers, including optics and 

IP/MPLS. 

GÉANT Plus is delivered over the highly resilient IP network and, as such, offers extremely high 

availability: 

 99.999% in the core backbone 

 99.4% (across GÉANT, including client interfaces). 

For an unprotected lambda, the availability target is 99.5% up to 1000km, which is then reduced by 

0.5% for every additional 1000km. 
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Figure1: GÉANT network topology [6] 

 

2.1.2 GARR-X 

GARR-X is the latest generation of the GARR network infrastructure (Figure 2). It is based on direct 

control of all its components, from its 8500 Km of fiber to application level systems. The GARR-X 

network seamlessly peers and it is integrated with regional or metropolitan networks to provide an 

end to end services to all its users. 
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Figure 2: GARR-X fiber topology 

On top of the fiber topology the GARR-X network features a highly reliable and robust IP network. Its 

availability is similar to the GÉANT: 

 99.99% in the core backbone 

 99.84% (including client interfaces). 
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2.2 Carrier Grade requirements 

The term "carrier grade" is used in telecommunication and computing to denote a system that is 

extremely reliable and with stable performances and functionalities [9].  

Large communication networks provide essential services to the community, which are expected to 

be always available and therefore networks have to exhibit “carrier grade” characteristics. The 

network is itself a complex system made from different active and passive components arranged in a 

physical topology. The Table 1 summarizes the key characteristics required by the system as a whole 

and by its components to various degree. It is a summary of requirements in literature [7], [8] and 

reference therein. 

Table 1: Carrier Grade Network characteristics 

Characteristic Description 

Reliability Low failure rates to minimize maintenance and inventory 

costs. High availability, including live upgrades. 

Fault-tolerant architecture is here 

considered a subset of Reliability 

The architectural aspect refers to the type of redundancy—

both internal redundancy and inter-element or network-

level redundancy. The system has to behave with none or 

minor degradation under known/random faults and 

recover in a short period of time 

Robustness and security features Required to avoid and/or mitigate the impact of intrusion 

or denial of services (DoS) attacks, traffic overloads, and 

human error.  

Scalability Support a variety of equipment and services, capacities up 

to 100 Gbps, operate up to thousands of equipment. 

Operate in a wide range of network latencies,  

Management features to support 

operational measurement and 

tracking, performance and alarm 

monitoring, and fault diagnostics 

Effective monitoring of failures and system performance. It 

provides operators with data for proactive network 

planning and pre- and post-failure data for causal analysis 

to drive corrective and preventive actions. 

Maintainability is here considered a 

subset of Reliability 

fast provisioning, fault tracking, performance 

measurement 

Quality of Service is here considered a 

quantification of above 

characteristics implementation 

More a service definition of SLA supported by the 

characteristics in this table. The availability and quality of 

packet transmissions (packet losses, delay variation and 

errors), also known as  “number of ‘9’”, places more 

stringent requirements for carrier grade characteristics 
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Resiliency (see picture below) Resiliency is not consider an elementary characteristic, but 

rather the intersection of reliability and security. The choice 

in dreamer is in line with the definition of the word as “the 

ability of a substance or object to spring back into shape; 

elasticity” and “the capacity to recover quickly from 

difficulties”. 

 

Reliability
Security  .

Robustness
Resiliency

 

Figure 3: Resiliency as a secondary characteristics 

The implementation of Carrier Grade characteristics involves every component of the system and its 

architecture. In case of networking every layer has to be carefully engineered.  

In the NRENs networks the fiber and leased circuit topology is chosen to obtain physical path resiliency 

in case of failures and avoid physical partitioning also in the case of multiple failures in the core. The 

optical equipment and the switching equipment are also redundant in their components and in the 

physical positions. 

 

2.3 DREAMER Requirements 

The objective of DREAMER is “to investigate how a network based on an  OpenFlow/SDN control plane 

can provide the same functionalities of an IP/MPLS control plane, offering a carrier grade approach to 

resiliency and fault management.” 

This restrict the focus of the project to the control plane (and virtual data planes created), considering 

software running on computing elements. The project will take the following assumptions:  

 The physical network has been engineered to be carrier grade, as defined above, in its 

components: fibers/circuit, topology, hardware in routers and switches  

 The computing elements’ hardware and the operating systems used are carrier grade (e.g. [10]) 

 Usual control and data  plane IP is present in all network nodes, including DREAMER own 

control plane (e.g. based on OSPF, BGP) 
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 IP/MPLS service targeted are VPN (high priority for DREAMER) and traffic engineering (lower 

priority for DREAMER). 

The DREAMER architecture requirements can be derived from the MPLS functionalities to be replaced 

and from Table 1 characteristics, quantified according to the GARR and GÉANT network current 

performance metrics. 

In considering the DREAMER objectives, the carrier grade requirements will consider that the physical 

components of the network have been engineered to be carrier grade. Also computing system are 

supposed to be carrier grade, see for Linux the specification of carrier grade Linux [10]. The control 

plane functionalities and the DREAMER behavior will be engineered and tested to verify their grade. 

The MPLS functionalities that DREAMER has to provide, with carrier grade characteristics are: 

 virtual point to point circuit creation at layer 2 (emulation of Ethernet circuits), with and 

without automatic resiliency 

 a VPN functionality similar to the one that can be created with MPLS (the BGP/MPLS solution 

uses BGP to distribute VPN routing information across the provider's backbone and MPLS to 

forward VPN traffic from one VPN site to another) 

 traffic engineering of flows (implementation of specific algorithms is out of scope for 

DREAMER project) 

Given the multi-domain nature of the European NREN and the need to provide virtual private 

networks that span more than one NREN, the DREAMER architecture and functionalities it should be 

possible to extend it toward multi-domain stitching of virtual circuit at layer 2 and at layer 3, either 

manually or automatically.  

Table 2: Characteristics and requirements 

Reliability The software components and the architecture should 

ensure that the system can remain active for a very long 

period of time, without interruption. 

Fault-tolerant architecture The DREAMER architecture should be capable of 

graciously handling the various type of failures, mostly in 

software. It should also react to physical substrate 

failures, e.g. redirecting traffic to different paths. 

Robustness and security features The DREAMER active components and the protocols used 

to communicate should react properly to attacks and 

protect information, using encryption, authentication and 

authorization e.g.  

Characteristic DREAMER requirement 
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Scalability Support a variety of equipment and services, capacities up 

to 100 Gbps, operate up to thousands of equipment. 

Operate in a wide range of network latencies, preserving 

fast resilience 

Management features to support 

operational measurement and 

tracking, performance and alarm 

monitoring, and fault diagnostics 

The dreamer components should include monitoring 

functionalities for the system and the traffic. 

 

Maintainability The system should be modular and upgradable with minor 

downtime. 

 

Two architectural aspects, will be specifically targeted:  

i) the control plane controller resilience and its distribution;  

ii) the data plane resilience, with carrier grade fast restoration mechanism. 

The target performance is to offer availability values in the same range of GÉANT and GARR-X 

networks. 

In addition to availability, the architecture should also keep at minimum the packet loss in case of 

circuit or node failures. The capacity to consider are between 10 Gbps and 100 Gbps, which 

correspond to about one to twelve MB for each millisecond. A typical router buffer of 2 GB is capable 

of storing between 2 and 100 millisecond of traffic in case of routing issues, in case of circuits longer 

than 1 millisecond the buffering time is correspondently reduced. A target convergence time of tens 

of milliseconds is desirable. 
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3 Data plane aspects 

This section deals with data plane aspects, reporting on the design of the proposed hybrid IP/SDN 

networking solution (OSHI). In section 3.1 we discuss some issues related to the introduction of SDN 

in IP Service Providers networks and describe the state of the art of similar solutions; in section 3.2 we 

define the main concepts of the proposed hybrid IP/SDN networking architecture; section 3.3 provides 

the detailed description of the proposed design, the notion of “SDN Based Paths” (SBP) is provided 

and the two implemented solutions using VLAN tags or MPLS labels to guarantee the coexistence 

among regular IP and SDN traffic implementing the so called  are respectively described in section 

3.3.3 and 3.3.4; in section 6.1 we show some limitations of current SDN ecosystem and propose the 

needed extensions. The performance evaluation of some aspects of the proposed OSHI solution will 

be reported in the section 4 later on, after the discussion of the experimental tools. 

3.1 SDN Applicability in IP Providers Networks 

SDN is based on the separation of the network control and forwarding planes. An external SDN 

controller can (dynamically) inject rules in SDN capable nodes. According to these rules the SDN nodes 

perform packet inspection, manipulation and forwarding, operating on packet headers at different 

levels of the protocol stack. 

We focus on SDN applicability in IP Service Providers networks. Figure 4 shows a reference scenario, 

with a single IP provider interconnected with other providers using the BGP routing protocol. Within 

the provider network, an intra-domain routing protocol like OSPF is used. The provider offers Internet 

access to its customers, as well as other transport services (e.g. layer 2 connectivity services or more 

in general VPNs). Using the terminology borrowed by IP/MPLS networks, the provider network 

includes a set of Core Routers (CR) and Provider Edge (PE) routers, interconnected by point to point 

links (Packet Over Sonet, GigaBit Ethernet, 10GBE…) or by legacy switched LANs (and VLANs). The 

Customer Edge (CE) routers is the node in the customer network connected to the provider network. 

Most often, an ISP integrates IP and MPLS technologies in its backbone. MPLS creates tunnels (LSP – 

Label Switched Path) among routers. On one hand, this can be used to improve the forwarding of 

regular IP traffic providing: 

i) traffic engineering 

ii) fault protection 

iii) no need to distribute of the full BGP routing table to intra-domain transit routers. 
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On the other hand, MPLS tunnels are used to offer VPNs and layer 2 connectivity services to customers. 

In any case, the commercial MPLS implementations are based on traditional (vendor-locked) control 

plane architectures that do not leave space for introducing innovation in an open manner. As a matter 

of fact, in case of complex services involving the MPLS control plane, IP Service Providers rely on single-

vendor solutions. The management of large-scale IP/MPLS network is typically based on proprietary 

(and expensive) management tools, which again constitute a barrier to the innovation. 
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CR - Core
Router
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Switch
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CR
CR CR
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PE
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Figure 4. Reference scenario: an IP provider network 

Let us consider the migration of a Service Provider network, based on IP/MPLS, to SDN. CR and PE 

routers could be replaced by SDN capable switches, giving the ability to realize advanced and 

innovative services and/or to optimize the provisioning of existing ones. The migration paths should 

foresee the coexistence of IP and SDN based services, in a hybrid IP/SDN scenario (resembling the 

current coexistence of IP and MPLS). According to the taxonomy defined by Vissicchio et al [14], this 

approach can be classified as Service-Based Hybrid SDN or Class-Based Hybrid SDN, depending on the 

portion of the traffic controlled: classes of traffic or different type of services. In this migration 

scenario a set of hybrid IP/SDN nodes are capable of acting as plain IP routers (running the legacy IP 

routing protocols), as well as SDN capable nodes, under the control of SDN controllers. We observe 

that IP/MPLS control and forwarding plane have been optimized in the years and are capable to 

operate on large-scale carrier networks, while SDN technology has not reached the same maturity 

level. Therefore, the advantage of introducing SDN technology in a carrier grade IP backbone is not 

related to performance improvements. Rather we believe that the openness of the SDN approach 

eliminates the need of complex distributed control planes architectures with closed implementations 

and difficult interoperability, facilitates the development of new services and fosters innovation. 

3.1.1 State of the art 

Pure SDN solutions based on L2 switches inter-connected with a centralized controller have been 

demonstrated both in data-centers and in geographically distributed research networks, such as 

OFELIA [20] in EU, GENI [21] and Internet2 [22][23] in US. To the best of our knowledge, these solutions 

do not integrate L3 routing among the SDN capable L2 switches. We argue that an ISP network 
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requires a more sophisticated approach that integrates IP routing protocols and can natively interwork 

with legacy IP routers. As stated in [14], a hybrid SDN model that combines SDN and traditional 

architectures may “sum their benefits while mitigating their respective challenges”. The recent 

literature presents some preliminary architectures toward hybrid IP/SDN networks. An example of a 

solution that tries to integrate also L3 routing and SDN is reported in [24]. 

RouteFlow [17] creates a simulated network, copy of the physical one, in the SDN controller, and uses 

distributed routing protocols, such as OSPF, BGP, IS-IS between the virtual routers inside the emulated 

network. A traditional IP routing engine (Quagga) computes the routing tables that are eventually 

installed into the hardware switches via the OF protocol. 

In [16] the authors present an Open Source Label Switching Router that generates OSPF and LDP 

packets using Quagga [30]. The node computes the MPLS labels that are then installed in the switches 

using the OpenFlow (OF) protocol. This architecture provides a distributed “standard” control plane, 

while it uses OF only locally in a node to synchronize the FIBs and to program the data plane.  

The Google B4 WAN [19] can be considered as an integrated hybrid SDN solution, and it has likely been 

the first application of the SDN approach to a large-scale WAN scenario. However in this use case the 

intra-domain routing protocol uses SDN as an interface to the forwarding plane. The B4 solution takes 

into account the WAN which interconnects the Google’s datacenter, we believe that this use case is 

rather different from traditional ISP scenario. To give an example, administrative problems are not 

addressed in a single administrative domain. The RouteFlow hybridization is quite similar to the one 

designed for Google’s B4 solution. 

Compared with these works, our solution considers hybrid IP/SDN nodes also capable of dealing with 

IP routing, thus achieving easier interoperability with non-OF devices in the core network and fault-

tolerance based on standard IP routing. The idea of supporting retro-compatibility and incremental 

deployment of SDN is not new. According to the OF specifications [18], two types of devices are 

considered: OF-only and OF-hybrid which can support both OF processing and standard L2/L3 

functionalities. Currently, only proprietary hardware switches implement the hybrid approach offering 

also L3 standard routing capabilities; in our work we analyzed and implemented a fully Open Source 

OF-hybrid solution designed to be flexible and scalable, so as to facilitate experimentation on hybrid 

IP/SDN networks at large scale. 

3.2  Proposed Hybrid IP/SDN Architecture 

In the IP/MPLS architecture there is a clear notion of the MPLS tunnels, called Label Switched Paths 

(LSPs). In an SDN network several types of tunnels or more generically network paths can be created, 

leveraging on the ability of SDN capable nodes to classify traffic based on various fields such as MAC 

or IP addresses, VLAN tags, MPLS labels. As there is not a standard established terminology for such 

concept, we will refer to these paths as SDN Based Paths (SBP). An SBP is a “virtual circuit” setup using 

SDN technology to forward a specific packet flow between two end-points across a set of SDN capable 

nodes. The notion of packet flow is very broad and it can range from a micro-flow i.e. a specific TCP 

connection between two hosts, to a macro-flow e.g. all the traffic directed towards a given IP subnet. 

As highlighted before, a flow can be classified looking at headers at different protocol levels. 
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We address the definition of the hybrid IP/SDN network by considering: 

i) mechanisms for coexistence of regular IP traffic and SBPs 

ii) the set of services that can be offered using the SBPs; 

iii) ingress traffic classification and tunneling mechanisms.  

Let us consider the coexistence of regular IP traffic and SBPs on the links between hybrid IP/SDN nodes. 

An SDN approach offers a great flexibility and can classify packets with a “cross-layer” approach, by 

considering packet headers at different protocol levels (MPLS, VLANs, Q-in-Q, Mac-in-Mac and so on). 

Therefore it is possible to specify a set of conditions to differentiate the packets to be delivered to the 

IP forwarding engine from the ones that belong to SBPs. In general, these conditions can refer to 

different protocol headers, can be in the form of white- or black- lists and can change dynamically, 

interface by interface. This flexibility may turn into high complexity, therefore the risk of 

misconfigurations and routing errors should be properly taken into account (see [11]). Without 

preventing the possibility to operate additional coexistence and tunneling mechanisms in a hybrid 

IP/SDN network, we propose MPLS tagging as the preferred choice and VLAN tagging as a sub-optimal 

choice. Both solutions have been implemented in our platform. 

Let us now consider the services and features that can be offered by the hybrid IP/SDN network. As 

primary requirements we assume three main services/functionalities: 

(i) virtual private networks (Layer 2 and Layer 3), 

(ii) traffic engineering 

(iii) fast restoration mechanisms. 

Moreover the architecture should facilitate the realization of new services or the development of new 

forwarding paradigms (for example Segment Routing [33]) without the introduction of complex and 

proprietary control planes. 

As for the traffic classification, the ingress PEs need to classify incoming packets and decide if they 

need to be forwarded using regular IP routing or they belong to the SBPs. The egress edge router will 

extract the traffic from the SBPs and forward it to the appropriate destination. We considered (and 

implemented in our platform) two approaches for the ingress classification: i) classification based on 

physical access port; ii) classification based on VLAN tags. As the ingress classification is not a specific 

feature of our architecture, we did not consider other traffic classification, e.g. based on MAC or IP 

source/destination addresses. However these approaches can be easily implemented without 

changing the other components. 

Finally, we considered a VLAN based tunneling mechanisms and two MPLS based tunneling 

mechanisms: plain IP over MPLS ([34], here referred to as IPoMPLS) and Ethernet over MPLS (EoMPLS, 

described in RFC 3985 [35]). Different services are supported by these tunneling mechanisms: the 

IPoMPLS and the VLAN based tunneling only support the relay of IP and ARP packets between two IP 

end points. We refer to this service as IP Virtual Leased Line (IP VLL). The EoMPLS tunneling mechanism 

can support the relaying of arbitrary layer 2 packets, providing the so called Pseudo-Wire (PW) service. 
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3.3 Detailed Design of the Hybrid IP/SDN Solution 

In this section we present the detailed design and the implementation of the proposed architecture. 

We describe the Open Source tools that we have integrated and how their practical limitations have 

been taken into account to deliver a working prototype. We will first introduce the high level 

architecture of an OSHI node (3.3.1) and the basic services we provide (IP Virtual Leased Line and 

Pseudo-wires, 3.3.2). Then we describe the two different options of using VLAN tags or MPLS labels to 

realize SDN Based Paths (SBPs) and to support the coexistence between IP based forwarding and SBP 

forwarding. As we will show, the design of MPLS based option has been more challenging and the 

resulting implementation is more complex. In part this is due to inherent limitation of OpenFlow 

architecture, in part to the shortcomings of the Open Source tools that we have integrated. In part 

due to the fact that MPLS over Ethernet is not clarified because usually MPLS over PPP is used. 

3.3.1 OSHI High Level Node Architecture 

We designed our Open Source Hybrid IP/SDN (OSHI) node combining an OpenFlow Capable Switch 

(OFCS), an IP forwarding engine and an IP routing daemon. The OpenFlow Capable Switch is connected 

to the set of physical network interfaces belonging to the integrated IP/SDN network, while the IP 

forwarding engine is connected to a set of OFCS virtual ports, as shown in Figure 5. In our OSHI node, 

the OFCS component is implemented using Open vSwitch (OVS) [29], the IP forwarding engine is the 

Linux kernel IP networking and Quagga [30] acts as the routing daemon. 

Virtual ports

Physical 
interfaces

IP Forwarding Engine – IP FE
(Linux networking)

IP Routing Daemon
(Quagga)

IP

SDN
OF Capable Switch - OFCS 

(Open vSwitch)

Local
Management
Entity (LME)

 

Figure 5. OSHI Hybrid IP/SDN node architecture 

The internal virtual ports that interconnect the OFCS with the IP forwarding engine are realized using 

the “Virtual Port” feature offered by Open vSwitch. Each virtual port is connected to a physical port of 

the IP/SDN network, so that the IP routing engine can reason in term of the virtual ports, ignoring the 

physical ones. The OFCS differentiates among regular IP packets and packets belonging to SDN Based 

Paths. By default, it forwards the regular IP packets from the physical ports to the virtual ports, so that 

they can be processed by the IP forwarding engine, controlled by the IP routing daemon. This approach 

avoids the need of translating the IP routing table into SDN rules to be pushed in the OFCS table. A 
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small performance degradation is introduced because a packet to be forwarded at IP level will cross 

the OFCS switch twice. It is possible to extend our implementation to consider mirroring of the IP 

routing table into the OFCS table, but this is left for future work. 

An initial configuration of the OFCS tables is needed to connect the physical interfaces and the virtual 

interfaces, to support the OFCS-to-SDN-controller communication, or for specific SDN procedures (for 

example to perform Layer 2 topology discovery in the SDN controller). A Local Management Entity 

(LME) in the OSHI node takes care of these tasks. In our setup, it is possible to use an “in-band” 

approach for OFCS-to-SDN-controller communication, i.e. using the regular IP routing/forwarding and 

avoiding the need of a separate out-of-band network. Further details and the block diagram of the 

control plane architecture of OSHI nodes are reported in [27]. 

3.3.2 OSHI basic services: IP VLL and PW 

We designed and implemented two basic services to be offered by the hybrid IP/SDN networks: the 

IP “Virtual Leased Line” (IP VLL) and the Layer 2 “Pseudo-wire” (PW) see Figure 6. Both services are 

offered between end-points in Provider Edge routers, the end-points can be a physical or logical port 

(i.e. a VLAN on a physical port) of the PE router connected to a Customer Edge (CE). The 

interconnection is realized in the core hybrid IP/SDN network with an SBP using VLAN tags or MPLS 

labels. 

 

Figure 6. IP VLL and PW services  

The IP VLL service guarantees to the IP end-points to be directly interconnected as if they were in the 

same Ethernet LAN and sending each other IP and ARP packets. It is not meant to allows the served 

SBP end-points to send packets with arbitrary Ethertype (e.g. including VLAN packets). We 
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implemented the IP VLL service both using VLAN tags and MPLS tags. In both cases the original source 

and destination MAC addresses, shown as “C” (for Customer) in the headers of the packets in Figure 

6, are preserved in the transit in the network core. This may cause problems if legacy L2 switches are 

used to interconnect OSHI nodes, therefore our implementation of IP VLL service can only work if all 

edge and core nodes are OSHI capable connected to each other without legacy intermediate switches 

in between. In principle one could implement MAC address rewriting replacing the customer 

addresses them with the addresses of the ingress and egress PEs or on a hop-by-hop case. This is 

rather complex to realize and to manage, because the egress node should restore the original 

addresses, needing state information per each SBP, so we did not follow this option. 

The PW service is also known as “Pseudowire Emulation Edge to Edge” (PWE3), described in RFC 3985 

[35]. The PW service provides a fully transparent cable replacement service: the endpoints can send 

packets with arbitrary Ethertype (e.g including VLAN, Q-in-Q). We implemented the PW service only 

using the MPLS tags, the customer Ethernet packet is tunneled into an MPLS packet as shown in Figure 

6. This approach solves the interworking issues with legacy L2 networks related to customer MAC 

addresses exposure in the core. 

3.3.3 OSHI - VLAN based approach 

3.3.3.1 Coexistence mechanisms 

Two coexistence mechanisms have been designed: 

i) Tagged coexistence, in which the IP traffic is transported with a specific VLAN tag while 

SBPs use other VLAN tags; 

ii) Untagged coexistence, in which the IP traffic travels “untagged” and SBPs use VLAN tags. 

Both mechanisms can interwork with existing legacy VLANs, as long as a set of tags is reserved for our 

use on each physical subnet/link (and this is needed only if the link between two routers already runs 

on a VLAN). As for the implementation of coexistence mechanisms we used the multiple tables 

functionality. It has been introduced with OF v1.1, but it is possible to emulate it using OF v1.0 with 

the so called “Nicira extensions”. We have initially leveraged the Nicira extensions implementation in 

Open vSwitch and then migrated to standard multiple tables when their support has been included in 

Open vSwitch. For Untagged coexistence, incoming untagged traffic will be directed to a virtual port 

(toward the IP forwarding engine), incoming tagged traffic will be directed to a physical port according 

to the configuration of the SBPs (VLAN tag can be switched appropriately). For Tagged coexistence, 

incoming traffic tagged with the specific VLAN tag for regular IP traffic will be directed to a virtual port 

(toward the IP forwarding engine), while traffic tagged with the other VLAN tags will be directed to a 

physical port according to the configuration of the SBPs (VLAN tag can be switched appropriately). The 

details are also reported in [27]. 

3.3.3.2 Ingress classification and tunneling mechanisms 

As for the ingress classification functionality in a Provider Edge router, we use the input port to classify 

untagged traffic as regular IP traffic or as belonging to the end-point of a VLL. For VLAN tagged traffic 

entering in a physical port of a PE router, each VLAN tag can individually mapped to a VLL end point 
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or assigned to regular IP traffic. For the untagged traffic, the implementation of the ingress 

classification is realized within the OFCS of the OSHI Provider Edge nodes. By configuring rules in the 

OFCS, it is possible to map the untagged traffic on an ingress physical port to a virtual port (for regular 

IP) or to an SBP (for a VLL end-point). For the tagged traffic, the incoming classification relies on the 

VLAN handling of the Linux networking: each VLAN tag x can be mapped to a virtual interface eth0.x 

that will simply appear as an additional physical port of the OFCS. 

The IP VLL service is realized with an SBP that switches VLAN tags between two end-points (in both 

directions). This has a severe scalability issues as the number of SBPs on a link is limited to 4096. 

Moreover in case legacy VLAN services are implemented on the links among the OSHI nodes, the VLAN 

label space needs to be partitioned between the SBPs and the legacy VLAN services, complicating the 

management and reducing the maximum number of SBPs on a link. 

We have implemented the IP VLL service in the VLAN based approach on top of the Floodlight 

controller [28]. In particular, the SBPs are setup using a python script called VLLPusher. It uses the 

Topology REST API of the Floodlight controller in order to retrieve the route that interconnects the 

VLL end-points. In this approach the route is chosen by the Floodlight controller (currently it simply 

selects the shortest path). The implementation of traffic engineering mechanisms for the VLLs would 

require to modify the route selection logic within the Floodlight controller. The script allocates the 

VLAN tags and then uses the Static Flow Pusher REST API of Floodlight in order to set the rules for 

packet forwarding and VLAN tag switching. 

3.3.3.3 Requirements on protocol and tools versions 

The proposed implementation of the VLAN based approach only requires OpenFlow 1.0 compliance 

in the controller. On the OFCS side, it requires the support for multiple tables which has been 

introduce in OF 1.1 and can be emulated using the proprietary Nicira extensions. In fact, the Local 

Management Entity uses the multiple table features for the initial configuration of the OFCS, while the 

run-time rules injected by the controller use OF v1.0. In our first implementation we relied on the 

Nicira extensions implemented in Open vSwitch, hence we were able to release a working prototype 

of a hybrid IP/SDN network using Open Source components in May 2014. 

3.3.4 OSHI - MPLS based approach 

In this subsection we illustrate the MPLS based approach. With respect to the VLAN based solution, it 

extends the functionality and the services offered by the OSHI networks. It solves the scalability issue 

(in terms of number of SBPs that can be supported on each link) of the VLAN solution. The use of MPLS 

labels enables the establishment of up to 220 (more than 106) SBPs on each link. We have implemented 

both IP VLL and PW services with MPLS, in both cases the MPLS solution does not interfere with VLANs 

that can potentially be used in the links between OSHI nodes. 

3.3.4.1 Coexistence mechanisms 

For the coexistence of regular IP service (best effort traffic) and SDN services (using SDN Based Paths) 

we use the Ethertype field of the L2 protocol. This corresponds to one of the mechanisms that can be 
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used in the IP/MPLS model: regular IP traffic is carried with IP Ethertype (0x0800), SBPs are carried 

with MPLS Ethertypes (0x8847 and 0x8848). We have implemented the coexistence solution using the 

OpenFlow multi-table functionality, as shown in Figure 7. Table 0 is used for regular IP, ARP, LLDP, 

BLDP, etc..., table 1 for the SBPs. In particular, Table 0 contains: 

i) two rules that forward the traffic with the Ethertypes 0x8847 (MPLS) and 0x8848 

(Multicast MPLS) to Table 1; 

ii) the set of rules that “bridge” the physical interfaces with Virtual Interfaces and vice versa; 

iii) two rules that forward the LLDP and BLDP traffic to the controller. 

Table 1 contains the set of rules that forward the packets of the SBPs according to the associated IP 

VLL or PW service. The coexistence in Table 0 is assured through different levels of priority. As regards 

the rule associated to the Multicast MPLS Ethertype, it is used for the VLL service (more below), while 

the PW service would need only the rule matching the unicast MPLS Ethertype. 

Packet IN start at 
table 0

Match in 
table 0 ?

Send to controller

GOTO table 1

Execution action 
set

Match in 
table 1 ?

MATCH1, action1
MATCH2, action2
MATCH3, action3
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Execution 
action set

....

MPLSM, goto:1
INPORT=1, output:2

INPORT=3, output:4

MPLS, goto:1
MPLSM, goto:1

INPORT=1, output:2

IP, ARP, ...

SBPs RyuLME

 

Figure 7. Packet processing in the OFCS flow tables 

3.3.4.2 Ingress classification and tunneling mechanisms 

As regards the ingress classification, the same mechanisms described for the VLAN approach are 

reused: the classification can be based on the physical input port or on the incoming VLAN.  

Let us analyze the tunneling mechanisms in the OSHI MPLS approach. Figure 8 shows the tunneling 

realized by OSHI-PE for the IP VLL service in the left half. C stands for Customer, Ingr refers to the 

ingress direction from customer to core, Egr refers to the opposite direction (egress). This solution 

borrows the IPoMPLS approach, in which an MPLS label is pushed within an existing frame. In this case 

an input Ethernet frame carrying an IP or ARP packet, keeps its original Ethernet header, shown as C-

ETH in Figure 8. As we have already stated for the VLAN implementation of the IP VLL, this solution 

has the problem of exposing the customer source and destination MAC address in the core. Moreover, 

note that the MPLS Ethertype (0x8847) overwrites the existing Ethertype of the customer packets. 

This does not allow to distinguish between IP and ARP packets at the egress node. A solution would 

be to setup two different bidirectional SBPs, one for the IP and one for the ARP packets. In order to 

save the label space and simplify the operation we preferred to carry IP packets with the MPLS 
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Ethertype and to (ab)use the multicast MPLS Ethertype (0x8848) to carry the ARP packets. With this 

approach, the same MPLS label can be reused for the two SBPs transporting IP and ARP packets 

between the same end-points. 

C-ETH

C-ETHGREP-IP

C-ETHMPLS P-IP

GREP-ETH

GRE

P-IP C-ETH

P-ETH

C-ETH

MPLSC-ETH

IP VLL tunneling PW tunneling
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e2
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i2

 

Figure 8. IP VLL and PW tunneling operations at the Provider Edges  

The right half of Figure 8 shows the tunneling operations performed by the PE for the PW service. P 

stands for Provider, it indicates the headers added/removed by the PE. This tunneling mechanism is 

an “Ethernet over MPLS” (EoMPLS) like solution. In the EoMPLS case the customer packet is 

encapsulated, including its original Ethernet header, in an MPLS packet to be carried in a newly 

generated layer 2 header. Unfortunately the OpenFlow protocol and most OpenFlow capable switches 

(including Open vSwitch that we are using for our prototype) do not natively support EoMPLS 

encapsulation and de-capsulation. A similar issue has been identified in [36], in which the authors 

propose to perform Ethernet in Ethernet encapsulation before handing the packet to a logical 

OpenFlow capable switch that will deal with pushing MPLS labels. Obviously this requires a switch 

capable of doing Ethernet in Ethernet encapsulation. Note that the process cannot be fully controlled 

with OpenFlow, as the Ethernet in Ethernet encapsulation is out of the OpenFlow scope. In our 

solution, Open vSwitch does not offer Ethernet in Ethernet encapsulation and we relied on GRE 

encapsulation. As shown in Figure 8, this approach introduces the additional overhead of a GRE tunnel 

(20 bytes for P-IP and 4 bytes for GRE headers) to the standard EoMPLS encapsulation, but allowed us 

to rely on Open Source off-the-shelf components. The implementation of the PW service required a 

careful design, whose result is shown in Figure 9. A new entity is introduced, called ACcess 

Encapsulator (ACE) in order to deal with the GRE tunnel at edges of the pseudo wire. The ACE is further 

analyzed in subsection 3.3.5. 
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Figure 9. PW implementation in the OSHI node prototype 

With this approach it is possible to rewrite the outer source and destination MAC addresses in the 

core OSHI network, so that they can match the actual addresses of the source and destination 

interfaces of the OSHI IP/SDN routers. This allows to support legacy Ethernet switched networks 

among the OSHI IP/SDN routers, which can be an important requirement for a smooth migration from 

existing networks.  

Both the IP VLL and PW services are realized with SBPs that switches MPLS labels between two end-

points (in both directions). We used the Ryu [38] controller and adapted the VLLPusher python script 

to perform the setup of the SBPs. The script uses the Topology REST API of the Ryu controller in order 

to retrieve the network topology. Then it evaluates the shortest path that interconnects the end-

points of the service. At this step, it is possible to introduce Traffic Engineering aspects in the selection 

of the path. Finally, the script allocates the MPLS labels and uses the Ofctl REST API to set the rules for 

packet forwarding and MPLS label switching. In the setup of a PW service the MAC rewriting actions 

are added, using the addresses of the OSHI nodes as the outer MAC addresses. 

3.3.4.3 Requirements on protocol and tools versions 

The MPLS solution needs at least OpenFlow v1.1, in which the handling of MPLS labels has been 

introduced. Both the SDN controller and the SDN Capable Switch need to support at least OF v1.1 

(most controller and switches jumped from OF v1.0 to v1.3). Considering our tools, an Open vSwitch 

version compliant with OF v1.3 has been released in summer 2014, making it possible to start the 

implementation of the MPLS based approach. As for the controller, we switched from Floodlight to 

Ryu because as of June 2014, only the latter included the support for OF 1.3. 

3.3.4.4 The Virtual Switch Service (VSS), also known as VPLS 

The PW service can be used as building block for creating more complex services, like for example the 

Virtual Switch Service (VSS). While a PW service instance bridges two layer 2 end-points, using the VSS 



Data plane aspects  

Deliverable OCG-DS1.1 
Final Report (DREAMER)  
Document Code: GN3PLUS14-1289-51 

24 

service a set of end-points can be transparently bridged into a virtual layer2 switch (see Figure 10). 

The ports of a VSS instance correspond to an arbitrary set of ports of the Provider Edge nodes. This 

service is called Virtual Private LAN Service (VPLS) in RFC 4761 [37]. A VSS provides the same VPLS 

service described in the RFC, but its implementations is based on SDN and does not exploit other 

control plane functionalities, therefore we renamed it. 

Physical

Virtual

Hybrid network 

IP/SDN

OSHI 1

Transparent 

Virtual Switch

OSHI 2

OSHI 3 OSHI 4

OSHI 5
 

Figure 10. Virtual Switch Service (VSS) in the OSHI network 

The VSS needs to relay upon the PW service, because using the IP VLL service the OSHI network does 

not provide a transparent forwarding of layer 2 packets. The VSS service is built using PWs that connect 

the end-points to one or more “bridging points” in the OSHI network in which a virtual layer 2 switch 

instance is reserved to bridge the packets coming from the PW.  

The deployment of a VSS instance is realized in three steps: the first step is executed by a python script 

called VSSelector. It retrieves the topology from the controller and then choices the OSHI nodes that 

will host the virtual switches. The second step is the deployment of the virtual switches, according to 

the decision taken by the VSSelector, Using the OSHI management tools additional instances of Open 

vSwitch are deployed on top of the selected OSHI nodes. The final step is the deployment of the PWs 

that will interconnect the CEs to the bridging points (if multiple bridging points are used, additional 

PWs will interconnect them as needed. We implemented two versions of the first step (bridging point 

selection) : i) un-optimized; ii) optimized. In the un-optimized version a random node from the 

topology is chosen and used to deploy the virtual bridge. For the optimized version, we observe that 

the selection of an optimal internal topology to implement a VSS exactly corresponds to the Steiner 

tree problem [39]. We implemented the heuristic defined in [40] to find an approximate solution of 

the minimal Steiner tree. Using the tree topology obtained from the heuristic, a set of virtual switches 

is deployed only in the branching points of the tree. These branching points are connected each other 

and with end-points through direct Pseudo Wires, In this way, the forwarding of the packets is 

optimized, as they are duplicated them only when it is necessary. 
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3.3.5 OSHI detailed node architecture 

In order to the support of the PW and VSS services, the architecture of an OSHI node needs to be more 

complex with respect to the high level architecture shown in Figure 5. 

Figure 11 provides a representation of the proposed solution for the PE nodes. The critical aspect is 

the support of PW encapsulation and decapsulation (as shown in the right side of Figure 8) in OSHI PE 

nodes. The circles refer to the encapsulation steps represented in Figure 8. The OF Capable Switch 

only handles the push/pop of MPLS labels, instead the ACE handles the GRE encapsulation. The ACE is 

implemented with a  separate instance of Open vSwitch and it exploits two virtualization functions 

recently introduced in the Linux Kernel: network namespaces and Virtual Ethernet Pairs. For each PW 

the ACE has two ports, a “local” port facing toward the CE locally connected to the PE node, and a 

“remote” one facing towards the remote side of the PW. The remote port is a GRE port as provided 

by OVS, and proper rules are configured in the ACE to bind the two ports. Therefore the ACE receives 

customer layer 2 packets on the local ports and sends GRE tunneled packets on the remote port (and 

vice-versa). The interconnection of OFCS ports and ACE ports (the endpoints of the yellow pipes in 

Figure 11) are realized using the Virtual Ethernet Pair offered by Linux Kernel.  
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Figure 11. OSHI-PE architectural details 

For each PW two “Virtual Ethernet Pairs”, are needed. Three endpoints are used as plain switch ports 

(two belong to the OFCS, one to the ACE), the last one on the ACE is configured with an IP address and 

it is used as endpoint of the GRE tunnel (Virtual Tunnel Endpoint, i.e. VTEP). As regards the GRE port, 

it is configured with the IP address of the remote VTEP, the VTEPs are in the same subnet and the ARP 

resolution is avoided through a static ARP entry. The interconnection among the namespaces is 

assured by means of OpenFlow rules in the OFCS. In the access port (1F) these rules are provided by 

the LME at the time of the ACE creation, while in the 4F and 2R cases they are pushed by the OpenFlow 

Controller during the PW establishment. 

An instance of ACE is used to handle all the PWs of a single Customer Edge (CE): there will be as many 

ACE instances as many connected CEs that are using PWs. The ACE runs in a private network 
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namespace, and has a private folders tree, as needed to guarantee proper interworking of difference 

instances of OVS in the same OSHI-PE. 

Coming to the implementation of the VSS, the internal design of an OSHI node that hosts a VSS 

Bridging Point (VBP) is shown in Figure 12. The design is quite similar to the one analyzed before for 

the PW encapsulation. A VBP is implemented with an OVS instance that does not have local ports, but 

only remote ones. A VPB instance represent a bridging point for a single VSS instance and cannot be 

shared among VSS instances.  

Physical ports

IP Forwarding Engine – IP FE
(Linux networking)

IP Routing Daemon

(Quagga)

OF Capable Switch - OFCS 
(Open vSwitch)

VSS Bridging Point – VBP

(Open vSwitch)

Pseudo Wire

VBP Name Space Root Name Space

 

Figure 12. An OSHI node that hosts a bridging point for a VSS 
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4 Experimental tools and performance 
evaluation 

With respect to the issue of introducing SDN in ISP networks, let us consider two key aspects: 

(i) design, implementation and testing of a solution; 

(ii) evaluation of a solution and comparison of different ones. 

As for the development and testing of a solution, it ideally requires the availability of a large-scale test 

network with real hardware nodes on which to deploy the solution. This is clearly an expensive 

approach which is typically not feasible for a researcher or research entity. 

The evaluation of a solution (and the comparison among different ones) is a rather complex task. First 

of all the functional properties of the solution needs to be assessed: which services can be offered to 

the customers and which management tools will be available to the service provider itself. Then 

several non-functional properties need to be evaluated (and this is by far the most difficult part). These 

properties range from quantitative properties like node performance in processing packets/flows, to 

qualitative properties which are more difficult to assess, like “network scalability” or “easiness to 

deploy new services”.  

In order to support both the development/testing aspects and the evaluation/comparison it is 

fundamental to have a realistic emulator platform. The platform should be capable to scale up to 

hundreds of nodes and links, representing an IP carrier network at a reasonably large scale. Performing 

experiments should be affordable also for research and academic teams, not only for corporate 

developers, therefore we advocate the need of an Open Source reference node implementation and 

of an Open Source emulation platform. On top of the platform the researcher/developer should be 

able to design and deploy services with a minimal effort. The management of these emulation 

platforms and the tools for setting up and controlling experiments are also non-trivial problems, for 

which we propose an Open Source set of tools called Mantoo (Management tools), described in 

section 4.1.  

In section 4.2 the Mantoo experimental tools have been used to gather performance measurements 

of some aspects related to the data plane solutions (OSHI) developed by DREAMER. 



Experimental tools and performance evaluation  

Deliverable OCG-DS1.1 
Final Report (DREAMER)  
Document Code: GN3PLUS14-1289-51 

28 

4.1 Mantoo: Management Tools for SDN experiments on 

Mininet and Distributed SDN testbeds 

Mantoo is a set of Open Source tools meant to support SDN experiments over emulators and 

distributed testbeds. Mantoo is able to drive and help the experimenters in the three phases that 

compose an experiment: design, deployment and control. It includes: 1) the Topology 3D (Topology 

and Services Design, Deploy and Direct), a web based GUI shown in Figure 13; 2) a set of python scripts 

to configure and control emulators or distributed testbeds; 3) a set of scripts for performance 

measurements. The overall Mantoo workflow is represented in Figure 16. Using the Topology 3D, the 

user can design its experiment in terms of physical topology and services, start the deployment of the 

topology and finally run the experiments exploiting the provided measurement tools. The design of 

Mantoo and of its components is modular and it can be easily extended to support scenarios that goes 

beyond the use cases of our interest. Hereafter, section 4.1.1 describes the Topology 3D GUI, section 

4.1.2 the deployment and control phases over the supported testbeds, section 4.1.3 the Measurement 

Tools. 

 

Figure 13. The Topology 3D (Topology and Services Design, Deploy & Direct) web Graphical User Interface 

 
 
 
  



Experimental tools and performance evaluation  

Deliverable OCG-DS1.1 
Final Report (DREAMER)  
Document Code: GN3PLUS14-1289-51 

29 

4.1.1 Topology 3D 

The Topology 3D offers a web GUI to design a network topology and configure the services for an 

experiment (see Figure 13). It consists in a JavaScript client and a Python back-end. A link to a public 

instance of the Topology 3D can be accessed from [26]. The Topology 3D is meant to be an extensible 

framework, that can support different models of topology and services. A model corresponds to a 

technological domain to be emulated and is characterized by the set of allowed node types (e.g. 

routers, switches, end-hosts), link types, service relationships and related constraints. As shown in 

Figure 16 the Topology 3D takes in input a textual description of the model. The model description is 

used to configure the topology designer page, to enforce the constraints when the user is building the 

topology and/or during the validation of the topology. So far, we have provided two models: 1) the 

OSHI topology domain, including two types of OSHI nodes (Core Routers, Provider Edge routers), the 

Customer Edge routers which are also used as traffic source/sinks and the SDN controllers; 2) a generic 

layer 2 network with OpenFlow capable switches, end-nodes and SDN controllers. Each model is 

decomposed in a set of views. A view is a perspective on a model, which focuses on some aspects 

hiding the unnecessary details. For example the OSHI model is decomposed in 5 views: data plane, 

control plane and 3 views for the 3 services (IP VLLs, Pseudo Wires and Virtual Switches). In the data 

plane view the user can design the physical topology in terms of nodes (OSHI CR and PE, Controllers, 

and CEs) and links; in the control plane view the user defines the association of OSHI nodes with 

controllers; in the service views the user can select the end points of the services.  

The Topology 3D integrates Networkx [25], a pre-existing Python package for the 

creation/manipulation of complex networks, making it also possible to randomly generate a data 

plane topology with given characteristics. 

The Topology 3D exports the representation of the views (topology and services) in a JSON format, 

which is the input to the deployment phase described hereafter. 

4.1.2 Deployment and control phases 

The deployment phase translates the designed topology into the set of commands that instantiate 

and configure the nodes and the services for a given experiment. This phase can target different 

execution environments for the experiments, by means of a specific “deployer”. So far, we targeted 

one emulator (Mininet) and two distributed SDN testbeds (the OFELIA testbed [20] and the GÉANT 

OpenFlow Facility - GOFF [41]). We are now planning another deployer that will allow the deployment 

and the control of experiment over the Amazon Web Services. 

Technically, the deployment phase is performed by a set of python scripts (Topology Deployer) that 

parse the JSON file with the representation of the views and produce further scripts (mostly shell 

scripts). The proper execution of these scripts deploys the experiment over Mininet or over a 

distributed SDN testbeds. The Testbed Deployer (see Figure 14) and Mininet Extensions (see Figure 

15) are Python libraries, that are used by the actual deployers. The Mininet Extensions library is 

tailored for Mininet emulator, while the Testbed Deployer currently supports the OFELIA and GOFF 

testbeds but it can be easily extended to support other testbeds. 
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Figure 14. Testbed Deployer Figure 15. Mininet Extensions 

4.1.2.1 Mininet Extensions 

By default, Mininet only provides the emulation of hosts and switches. We extended Mininet 

introducing an extended host capable to run as a router and managed to run the Quagga and OSPFD 

daemons on it. Then we have added Open vSwitch to it, as needed to realize the OSHI node. Another 

enhancement to the default Mininet setup depends on our requirement to reach the emulated nodes 

via SSH from an external “non-emulated” process. To this purpose, we introduce a fictitious node in 

the root namespace of the hosting machine, that is connected to the emulated network and works as 

relay between the emulated world of Mininet and the “real” world of the hosting machine. The details 

on the architecture for the deployment on Mininet can be found in [27]. The Mininet Extensions library 

is able to automate all the aspects of an experiment. This includes the automatic configuration of IP 

addresses and of dynamic routing (OSPF daemons) in all nodes, therefore it relieves the experimenter 

from a huge configuration effort. As for the software design we have to followed a Mininet oriented 

design, instead of a big python script that uses the core functionality of Mininet. From an architectural 

point of view we have realized Mininet wrappers, extending and overriding when necessary the 

default behavior of the Mininet modules. This approach guarantees a more manageable, extensible 

and flexible project. 
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Figure 16. Mantoo enabled emulation workflow 

4.1.2.2 Deployment over distributed SDN testbeds 

We implemented and tested a deployer the OFELIA testbed and one for the GOFF testbed. These two 

testbeds share a similar architecture as they are based on the OCF (OFELIA Control Framework) [20]. 

The testbeds have a different organization of the management network, in particular in the OFELIA 

testbed there is a management network with private IP addresses, while the GOFF testbed all the 

virtual machines have a public IP address for the management. For the OFELIA testbed, we run our 

experiments on the CREATE-NET island, composed by a set of 8 OpenFlow capable switches and 3 

Virtualization Servers that can host experimental Virtual Machines controlled by the experimenters. 

The GOFF testbed offers five sites, each one hosting two servers, which run respectively the OF 

equipment (based on OVS) and the VM hosting site. Note that we can deploy the OSHI prototype 

based on MPLS labeling only on GOFF testbed, as it offers a more recent Linux kernel for the virtual 

machines, while the VLAN based version can run on both. 

As shown in Figure 16, the OFELIA/GOFF Deployer python scripts automatically produce the 

configuration scripts for emulating a given topology, composed of access and core OSHI nodes (OSHI-

PE and OSHI-CR) and of Customer Edge routers (CE). This includes the automatic configuration of IP 

addresses and of dynamic routing (OSPF daemons) in all nodes, therefore it relieves the experimenter 

from a huge configuration effort. The Management Tools have been used to automate and facilitate 

the setup, the configuration process and finally the deployment of an experiment. Different 
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mechanisms have been used: a management server coordinates the needed operations, 

communicating with the rest of the experiment machines through the testbed management network. 

It uses the Management Tools project, based on Distributed SHell (DSH), for distributing and executing 

remote scripts and commands. Once DSH has been properly configured with the IP of the VMs 

belonging to the experiment, it can run commands on a single machine, on a subset (group), or on all 

the machines deployed. 

The configuration files generated by the deployers have to be uploaded on a site reachable from the 

testbed, for example on a webserver running in the management machine. During the deployment 

process these files are downloaded by each virtual machine belonging to the experiment. The 

deployment is realized through the Management Tools, these scripts simplify as possible the running 

of the experiments and speed up the deployment through parallel commands. They relieve the 

experimenter from tedious and error prone activities and are able to: i) enable root login, activate 

login without password and avoid initial ssh paring; ii) automatically configure the local DSH (we 

assume that these scripts are ran by the management server); iii) setup the machines; iv) update 

machines already setup; v) configure the experiment; vi) stop the experiment; vii) clean the machines; 

viii) change the repository of the configuration files. Other shell commands can be executed leveraging 

DSH, obviously as precondition it is necessary to properly configure the above tool. A more detailed 

overview of the Management Tools and a typical use-case can be found at [26]. 

As regards the emulation, each OSHI node and each CE is mapped into a different VM running in one 

of the Virtualization Server of a given testbed (OFELIA or GOFF). The Topology to testbed mapping file 

contains the association of OSHI nodes and CEs to testbed VMs, the  functionality “Mapped” topology, 

offered by the Topology 3D, makes this file useless, however it is still used for backward compatibility 

with standard topology. An overlay of Ethernet over UDP tunnels is created among the VMs to emulate 

the network links among OSHI nodes and between OSHI nodes and CEs. 

In our first design we created the tunnels using the user space OpenVPN tool (with no encryption). 

The performance was poor, as performing encapsulation in user space is very CPU intensive. Therefore 

we considered a second design approach that uses VXLAN tunnels [32] provided by Open vSwitch 

(OVS). As explained in [31], OVS implements VXLAN tunnels in kernel space, and this allows to 

dramatically improve performance with respect to OpenVPN. The design of the VXLAN tunneling 

solution for OSHI over a OCF testbed is reported in Figure 17. We only use VXLAN as a point-to-point 

tunneling mechanism (the VXLAN VNI identifies a single link between two nodes) and we do not need 

underlying IP multicast support as in the full VXLAN model. The SDN capable OVS is also able to 

perform encapsulation and decapsulation of VXLAN tunnels, each tunnel corresponds to a port in the 

switch. The VXLAN tunnel ports in Figure 17 are conceptually equivalent to physical ports shown in 

Figure 5. 
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Figure 17. Implementing VXLAN tunnels using Open vSwitch (OVS) 

4.1.2.3 Control phase (running the experiments) 

After the deployment, it is possible to control the experiments by opening consoles on the different 

nodes fully integrated in the web GUI of the Topology 3D. The consoles show the output generated 

by ssh processes connected to the emulated nodes (deployed in the Mininet emulator or in a virtual 

machine hosted in the distributed testbeds). The generated output is conveyed to the terminal shell 

running in the experimenter browser, leveraging the WebSocket API, where each terminal has a 

separate WebSocket channel. 

 

4.1.3 Measurement Tools 

In order to automate as much as possible the process of running the experiments and collecting the 

performance data we have developed an object oriented multithreaded Python library called 

Measurement Tools (MT). The library offers an intuitive API, that allows the experimenter to “program” 

his/her tests. Using the library we can remotely (through SSH) run the traffic generators (iperf) and 

gather load information (CPU utilization) on all nodes (VMs). As for the load monitoring, taking CPU 

measurements from within the VMs (e.g. using the top tool) does not provide reliable measurements. 

The correct information about the resource usage of each single VM can be gathered from the 

virtualization environment, for example in Xen based system we can leverage on the xentop tool, 

which must be run as root in the hosting XEN server. Therefore for the OFELIA environment we have 

developed a python module that collects CPU load information for each VM of our interest in the XEN 

host using xentop and formats it in a JSON text file. MT retrieves the JSON file from the python module 

with a simple message exchange on a TCP socket. Instead, in the GOFF environment, we cannot 

leverage on the same tool used in the OFELIA testbed, because the measurement data are provided 

through Zabbix interface [42]. In order to retrieve the necessary information we have extended our 

tools, in particular we have realized a python module able to retrieve the data from Zabbix API.   
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Figure 18. Measurement Tools in action 

It should be noted that the MT offers a general framework simple to extend. To give an example, 

instead of iperf tool, we could run new commands with little extensions to the code. Currently we 

have developed tools able to generate UDP traffic and able to gather CPU load information from the 

virtualization environment. In future, an experimenter can easily extend this framework to run his/her 

tests and to measures his/her key indicators. 

4.2 Performance evaluation experiments 

In this section we analyze some performance aspects of the solutions designed and developed for the 

hybrid IP/SDN data plane. During the project lifetime, we had two releases of the experimental 

platform (corresponding to the two internal milestones M2 and M4). In the first release we provided 

the VLAN tag based mechanism for creating the SBPs, while in the second release we included the 

MPLS tag based mechanism. The first 3 experiments described hereafter have been realized using the 

first release, the second group of 3 experiments has been run using the final release. 

i) IP forwarding performance using OSHI, with reference to the data plane architecture 

shown in Figure 5 (section 4.2.1) 

ii) Comparison of OpenVPN and VXLAN tunneling for experiments over distributed SDN 

testbeds (section 4.2.2) 

iii) IP forwarding performance (plain and OSHI) and SBP forwarding in an overlay topology 

using tunneling mechanisms over distributed SDN testbeds (section 4.2.3) 

In the experiments i, ii and iii we use the iperf tool as traffic source/sink in the CE routers and generate 

UDP packet flows from 500 to 2500 packet/s (datagram size is set at 1000 Byte). We evaluate the CPU 

load in the PE routers with our xentop based measurement tool. We executes periodic polling and 

gather the CPU load of the monitored VMs. In each run we collect 20 CPU load samples with polling 

interval in the order of two seconds, the first 10 samples are discarded and the last 10 are averaged 

to get a single CPU load value. Then we evaluate the mean (AVG) and standard deviation (DEV) over 

20 runs.  
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The following 3 experiments have been executed using the final prototype. We have performed these 

experiments over GOFF testbed (physical topology is represented in Figure 25) using the overlay 

topology shown in Figure 26, the experiments are listed below: 

iv) Comparison of VLL and PW forwarding (section 4.2.4) 

v) Performance evaluation of the OVS kernel cache (section 4.2.5) 

vi) Effect of the increasing the number of OVS flows on the OSHI performance (section 4.2.6) 

 

4.2.1 First performance assessment of OSHI 

In this experiment, we consider the design in Figure 5 and compare the OSHI IP forwarding (each 

packet crosses the Open vSwitch two times) with ROUTER IP forwarding (the Open vSwitch is removed 

and the OSHI node interfaces are directly connected to the IP forwarding engine). We refer to this 

scenario as “plain VLAN” as no tunneling mechanism is used. This experiment is not automatically 

deployed using the Topology 3D, and we setup a limited topology with two CE nodes and two OSHI 

nodes. In this case it is not possible to deploy the IP VLL service and only plain IP router and OSHI IP 

have been compared. In the experiment results (see [27] for details) we can appreciate a CPU load 

penalty for OSHI IP forwarding with respect to plain IP forwarding in the order of 10%-20%. Apparently, 

the CPU load penalty is decreasing in relative terms at higher CPU load, but this is subject to further 

evaluation in future experiments. The theoretical CPU saturation rate  for plain IP router is in the order 

of 14000 p/s. Adding OSHI-IP forwarding reduces the theoretical CPU saturation rate to something in 

the order of 12500 p/s. 

In all the experiments (including the ones reported in the following subsections) we used UDP 

datagram with 1000 bytes length. We had preliminary assessed that packet size had negligible impact 

on processing load, by using UDP packets ranging from 100 bytes to 1400 bytes. Performance was only 

influenced by the packet rate. 

 

 

Figure 19 - CPU load vs. packet rate (plain VLAN) Figure 20 – CPU load linear regression (plain VLAN) 
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4.2.2 Performance comparison of OpenVPN and VXLAN tunneling  

In this experiment we have deployed the topology represented in Figure 22 over the physical testbed 

topology in Figure 21 (3 OF switches and 3 virtualization servers). We want to evaluate the processing 

overhead introduced by the tunneling mechanisms (OpenVPN and VXLAN) used to deploy the overlay 

experimental topologies over distributed SDN testbeds. 

In Figure 23 we compare the CPU load for OSHI IP solution in the OpenVPN, VXLAN and plain VLAN 

scenarios. It can be appreciated that VXLAN tunneling adds a reasonably low processing overhead, 

while OpenVPN tunneling would dramatically reduce the forwarding capability of an OSHI node in the 

testbeds. The theoretical CPU saturation rate for OpenVPN tunneling is in the order of 3500 p/s, which 

is 4 times lower than in the plain VLAN case. The theoretical CPU saturation rate for VXLAN tunneling 

is only 8% lower than the plain VLAN case, showing that VXLAN is an efficient mechanism to deploy 

overlay topologies. 

 

 

Figure 21. Physical network Figure 22. Overlay network 

 

Figure 23. CPU Load for different tunneling mechanisms. 
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4.2.3 Performance analysis on distributed SDN testbed 

In this set of experiments we evaluate the processing load of different forwarding solutions over the 

distributed SDN testbeds considering the topology shown in Figure 22. For the OSHI solution, we 

consider IP forwarding (“OSHI IP”) and SBP forwarding (“OSHI VLL”). Then we consider plain IP 

forwarding as a reference (“ROUTER IP”).  

We executed the performance tests of OSHI IP, OSHI VLL and ROUTER IP using the VXLAN tunneling 

solution. Figure 24 provides reports the experiment results. As shown in Figure 17, in this case in the 

plain IP forwarding (ROUTER IP) solutions the packets always cross the Open vSwitch which handles 

the VXLAN tunneling, therefore as expected there is no advantage with respect to OSHI IP forwarding. 

The OSHI VLL solution is the least CPU intensive and its theoretical CPU saturation rate is in the order 

of 13000 p/s. The OSHI IP solution increases CPU load of less than 10%, and its theoretical CPU 

saturation rate is in the order of 12000 p/s.  

 

Figure 24. CPU load with VXLAN tunneling. 

4.2.4 Performance assessment of PW service 

We have performed these experiments over GOFF testbed (physical topology is represented in Figure 

25) using the overlay topology shown in Figure 26. In the experiments we use the iperf tool as traffic 

source/sink in the CE routers and generate UDP packet flows. We evaluate the CPU load in the OSHI-

PE5 node, by periodically polling to gather the CPU load of the monitored VM. The CPU load samples 

are provided by Zabbix every minute, and they report the average calculated in this period with 1-

second-interval sample. We executed a single run and we collected 7 CPU load values, the first 2 are 

discarded and the last 5 are averaged to get a single CPU load value.  
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Figure 25. GOFF Physical network Figure 26.GOFF Overlay network 

 

We considered the node design shown in Figure 5 for the IP VLL service, while for the PW service we 

considered the architecture described in Figure 11. We compare the IP VLL service with the PW service, 

in order to estimate the overhead introduced by the ACE and the operations of the GRE tunnel. We 

generate UDP packet flows from 2000 to 18000 packet/s. The datagram size is set at 1000 byte, we 

use as baseline the topology represented in Figure 26 and in steps of three we have added two new 

Customer Edge (one receiver and one sender), this was necessary because once we generated 6000 

packet/s in a single CE, the CPU load of the CE virtual machines reached high value and we saw losses 

in the iperf transmissions. 

In the experiment results (see Figure 27) we can appreciate a CPU load penalty for OSHI PW forwarding 

with respect to OSHI VLL forwarding in the order of 15%-21%. Apparently, the CPU load penalty is 

decreasing in relative terms at higher CPU load. These results shows the potential improvements that 

could be achieved by natively supporting EoMPLS tunneling in the switches. 

 

Figure 27. CPU load for different OSHI services. 
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4.2.5 Performance analysis of the OVS kernel cache 

In the OVS architecture, the first packet of a flow arriving at a node is forwarded to ovs-switchd, a user 

space process. Ovs-switchd processes the packet, forwards it (if there exists a matching rule) and 

finally installs a “kernel flow”. The kernel flows act like a cache: if another packet belonging to the 

same flow arrives in a short time, it will be forwarded using the kernel flow cache, otherwise it will be 

forwarded in user space. OVS performance is optimal as long as the packets are forwarded using the 

kernel flow cache. The probability of a “cache-hit” depends on the cache size and on the variability of 

the input traffic. The aim of this test is to evaluate the importance of the kernel flow cache in OSHI 

scenario. 

According to the Open vSwitch documentation in the source code, the kernel cache can theoretically 

supports up to 200,000 flows. In the Open vSwitch instances that we used in the experiments, the 

practical limit was of 10,000 flows. The default idle time before deletion from the cache is ten seconds, 

but a kernel flow can be removed earlier due to the cache management policies of Open vSwitch. 

In order to evaluate the impact of the kernel cache we generated different traffic patterns with an 

increasing number (N) of packet flows, fixing the aggregate packet rate to 12500 packet/s. For each 

packet flow in the experiment we used an independent iperf packet generator with rate of 12500/N 

packet/s. Part of the packet flows are handled with best effort IP, part with SBPs. There is not a one-

to-one mapping between packet flows and the needed kernel flows: a number of kernel flows are 

needed for the best effort IP, regardless of the packet flows, while two kernel flows are needed for a 

packet flow handled with SBP (one for each direction). We evaluated the average number of needed 

kernel flows for a given traffic pattern, by running an experiment with the default kernel cache size 

(10000 entries) and periodically monitoring the number of active kernel flows (using the OVS 

command line interface). We used 6 traffic patterns and measured the number of average kernel flows 

installed as shown in Table 3. 

Table 3 – Average number of kernel flow entries for different traffic patterns 

best effort iperf 
UDP packet flows 

VLL SBPs iperf 
UDP packet flows 

average number of  
kernel flow entries 

1 0 9 

1 1 11 

1 2 13 

5 5 17 

10 10 22 

20 20 43 

 

Then we modified the OVS source code in order to limit the kernel cache dimension to 10 entries. 

Figure 28 we report the CPU load with respect to the average needed number of kernel flows. We 

observe that the system operates in two states: either the packets are handled by the kernel cache 

and the CPU utilization is 40% for the given packet rate, or the packets needs to be processed in user 

space and as expected there is a great performance degradation (the CPU load is around 94%). 
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Figure 28. CPU load with limited kernel cache (10 flows) and increasing average flows. 

The design insight that we gather from this experiment, related to our OSHI solution, is that the 

number of active SBPs should remain within the limit of the kernel flow table in order to have good 

performance. With the hardware configuration that we used in our experiments, this corresponds to 

10000 active SBPs. 

4.2.6 Effects of larger flow table on the OVS performance 

In this experiment we want to evaluate how a larger flow table can influence the forwarding 

performance of an OSHI node. We evaluate the OSHI IP forwarding (each packet crosses two time the 

OFCS) performance with an increasing number of flows in the Table 0, where the rules for the IP 

forwarding are installed. In particular we analyzed two scenarios: kernel cache enabled and disabled. 

We fixed the UDP packet rate at 6250 packet/s and installed a variable number of fake flows (they will 

never match) from 0 to 5000. 

It is to be noted that in all the analyzed cases, the table 0 of the OFCS is not empty, but there are at 

least the rules necessary to forward correctly the IP packets. In Figure 29 we report the results of the 

experiment. 

The increasing number of flows in the table does not influence the forwarding performance in both 

cases: kernel cache enabled and disabled. With kernel cache enabled, this is expected. In fact, the 

kernel cache will only contain the active flows, irrespective of how many flows are installed in the 

switch flow table. On the other hand, with the kernel cache disable all the packets are sent to the user 

space daemon that will forward them using the user space table (where there are also the fake flows). 

The results in this case show that OVS performance is not influenced by the number of the flows in 

the switch flow table. 
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Figure 29. CPU load for different number of fake flows installed in the OFCS table. 
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5 Control plane aspects 

Several distributed NOS architectures have been proposed recently to guarantee the proper level of 
redundancy in the control plane: ONIX [43], Kandoo [44], HyperFlow [45], to name a few. 
 
One of the most promising solutions to properly deal with control plane robustness in SDN is ONOS 
(Open Networking Operating System) [50]. ONOS offers a stable implementation of a distributed NOS 
and it has been recently released under a liberal open-source license, supported by a growing 
community of vendors and operators. In ONOS architecture, a cluster of controllers shares a logically 
centralized network view: network resources are partitioned and controlled by different ONOS 
instances in the cluster and resilience to faults is guaranteed by design, with automatic traffic 
rerouting in case of node or link failure. Despite the distributed architecture, ONOS is designed in 
order to control the data plane from a single location, even in case of large Wide Area Network 
scenarios. 
 
However, as envisioned in the work of Heller et al. [51], even though a single controller may suffice to 
guarantee round-trip latencies on the scale of typical mesh restoration target delays (200 msec), this 
may not be valid for all possible network topologies. Furthermore, ensuring an adequate level of fault 
tolerance can be guaranteed only if controllers are placed in different locations of the network. 
 
To this purpose, we designed a geographically distributed multi-cluster solution called ICONA (Inter 
Cluster ONOS Network Application) which is working on top of ONOS and whose purpose is to both 
increase the robustness to network faults by redounding ONOS clusters in several locations but also 
to decrease event-to-response delays in large scale networks. 
 
In the rest of the chapter we will consider a large scale Wide Area Network use-case under the same 
administrative domain (e.g. single service provider), managed by a single logical control plane. ICONA 
is a tool that can be deployed on top of ONOS; a first release is available under the Apache 2.0 open 
source license [52]. 
 
The ICONA multi-cluster architecture represents an answer to the control plane scalability and 
resiliency requirements outlined in section 2. The basic scalability and resilience are provided by the 
ONOS clustering approach: within each cluster the number of ONOS instances can be dimensioned 
depending on the number of devices to be controlled in the cluster. If one of the ONOS instances in 
the cluster fails, the other instances can take control of the devices that were controlled by the failing 
instances. The cluster dimensioning can take into account a maximum number of controller failures 
to be corrected. The multi-cluster aspects introduced by ICONA enhances the scalability as regards the 
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geographical dimension of the provider network. Having a single cluster of controllers (in which all 
controllers need to reside in the same data center) could be not adequate to cover a large geographical 
network, with network delays that can be in the order of 100 ms. The ICONA multi-cluster architecture 
with inter-cluster communication provides the right answer to control providers’ networks with large 
geographical span. 
 
The contribution on control plane is structured as follows. Section 5.1 discusses the state-of-the-art in 
the field. Section 5.2 provides an overview of ONOS, while section 5.3 presents the ICONA 
architecture. Some preliminary results are then discussed in section 5.4. 

5.1 State of the art in distributed controllers 

One of the fundamentals of SDN is the logical centralization of the control plane. It fosters flexibility 
thanks to the centralized network state view and common management interface with the network 
devices. On the other hand, this approach introduces some drawbacks and requires a specific design 
in terms of control network performance, scalability and fault tolerance. Most of the open source 
controllers currently available are focused on function more than on scalability and fault tolerance. 
This section provides a review on the literature about SDN distributed architectures that address the 
scalability and fault tolerance issues. 
ONIX [43] provides an environment on top of which a distributed NOS can be implemented with a 
logically centralized view. The distributed Network Information Base (NIB) stores the state of network 
in the form of a graph; the platform is responsible for managing the replication and distribution of the 
NIB, the applications have to detect and resolve conflicts of network state. Scalability is provided 
through network partitioning and aggregation (hiding the details), control over the consistency of the 
state is provided. In regard to the fault tolerance, the platform provides the basic functions, while the 
control logic implemented on top of ONIX needs to handle the failures. 
ONIX has been used in the B4 network, the private WAN [19] that inter-connects Google’s data centers 
around the planet, using the OpenFlow protocol to control the forwarding devices. The large 
geographical dimension is addressed through a hierarchical architecture in which multiple sites are 
considered as logical Autonomous Systems. Within each site, a modified version of the ONIX platform 
is deployed. A logically centralized application with a global view provides the overall coordination 
across the multiple sites, providing Traffic Engineering functionality. This high level design is similar to 
our ICONA solution, but ICONA is not tailored to a specific use case, providing a reusable framework 
on top of which it is possible to build specific applications (for example Traffic Engineering). 
The Kandoo [44] architecture faces the scalability issue by creating hierarchical controllers 
architecture: the so-called root controller is logically centralized and maintains the global network 
state; the bottom layer is composed by local controllers in charge of managing a restricted number of 
switches and actions that do not require the network-wide state. Applications, which require a global 
network view, are managed by the root controller that consequently delegates the requests (e.g., flow 
installation in the devices) to the local controllers. Applications with a local scope are managed directly 
by the local controller. The Kandoo architecture does not focus on the distribution/replication of the 
root controller. Fault tolerance management either in the data and control plane are not considered. 
A local controller cannot always manage a fault (e.g., link failure between two switches controlled by 
different local controllers). The consequence is that local controllers should notify the root one and 
wait before reacting. 
HyperFlow [45] focuses on both scalability and fault tolerance. Each HyperFlow instance manages a 
group of devices without losing the centralized network view: the network state is propagated to all 
the instances through a publish/subscribe mechanism. A control plane failure is managed by 
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redirecting the switches to another HyperFlow instance. Such a solution is suited to a data-center 
scenario, when latencies in the control plane are very short (roughly under 10 ms). In a WAN scenario, 
where the physical distance, and thus the delay, between the different instances can easily exceed 
that threshold, this architecture is unable to react fast to network events. 
DISCO [46] architecture considers a multi-domain environment and provides an East-West interface 
between different controllers. This approach is specifically designed to control a WAN environment, 
composed of different geographical controllers that exchange summary information about the local 
network topology and events. This solution overcomes the HyperFlow limitations, however it does not 
provide local redundancy: in the case of a controller failure, a remote instance takes control of the 
switches, increasing the latency between the devices and their primary controller. 
ElastiCon [47] and Pratyaastha [48] aim to provide an elastic and efficient distributed SDN control 
plane to address the load imbalances due to static mapping between switches and controllers and 
spatial/temporal variations in the traffic patterns. 
Fleet [49], PANE [57] and STN [58] design robust and distributed SDN control planes, which consider 
the problem of conflicting network-policy updates, each one from a different point-of-view. Fleet aims 
to resolve the “malicious administrator problem” that arises in a multi-domain administrative 
environment. PANE considers as scenario the participatory networks, in which the control plane 
provides a configuration API to its users, applications and end-hosts. Finally, STN “focuses on how to 
solve concurrency issues that arise from the concurrent execution of control modules on different 
physical nodes”. SMaRtLight [59] considers a distributed SDN controller aiming at a fault-tolerant 
control plane. It only focuses on control plane failures, assuming that data plane failures are dealt with 
by SDN applications on top of the control platform. Its core component is the replicated database that 
stores all network state. Each replica is “warm” and immediately updated. Scaling of such solution to 
WAN scenarios is not addressed. 
The Beacon cluster [60] project also targets the Datacenter scenario, with a general framework 
focusing on load balancing (with addition and removal of controllers), dynamic switch-to-controller 
mapping and instance coordination. 
In OpenDaylight [61], an initial work on clustering has been provided in the last release of the project 
(Helium), where the Akka framework [62] and the RAFT consensus algorithm [63] have been exploited 
to realize a clustered version of the data store. At the time of writing, it is not possible for us to assess 
the maturity of these components in implementing a reliable, available and scalable control platform. 
 

5.2 An overview of ONOS 

ONOS (Open Network Operating System) is a distributed SDN controller that has been recently 
released as open source by ON.Lab as part of a joint community effort with a number of partners 
including AT&T, NEC and Ericsson among the others [53]. 
 
ONOS implements a distributed architecture in which multiple controller instances share multiple 
distributed data stores with eventual consistency. The whole cluster manages the entire data plane 
simultaneously. However, for each device a single controller acts as a master, while the others are 
ready to step in if a failure occurs. With these mechanisms in place, ONOS achieves scalability and 
resiliency. Figure 30 shows the ONOS internal architecture within a cluster of four instances. 
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Figure 30 - ONOS distributed architecture 

 
The Southbound modules manage the physical topology, react to network events and 
program/configure the devices leveraging on different protocols. The Distributed Core is responsible 
to maintain the distributed data stores, to elect the master controller for each network portion and 
to share information with the adjacent layers. 
The NorthBound modules offer an abstraction of the network and the interface for application to 
interact and program the NOS. Finally, the Application layer offers a container in which third-party 
applications can be deployed.  
 
In case of a failure in the data plane (switch, link or port down), an ONOS instance detects the event 
(using the Southbound modules), computes alternative paths for all the traffic crossing the failed 
element (operation in charge of the Intent Framework), and publishes them on the Distributed Core: 
then, each master controller configures accordingly its network portion. 
 
ONOS leverages on Apache Karaf [54], a java OSGi based runtime, which provides a container onto 
which various component can be deployed. Under Karaf, an application, such as ICONA, can be 
installed, upgraded, started and stopped at runtime, without interfering other components.  

 

5.3 The ICONA Architecture 

The basic idea behind ICONA is to partition the Service Provider's network into several geographical 
regions, each one managed by a different cluster of ONOS instances. While the management of the 
network is still under the same administrative domain, a peer-to-peer approach allows a more flexible 
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design. The network architect can select the number of clusters and their geographical dimension 
depending on requirements (e.g. leveraging on some of the tools being suggested within the 
aforementioned work [51], without losing any feature offered by ONOS, neither worsening the system 
performances. In this scenario, each ONOS cluster provides both scalability and resiliency to a small 
geographical region, while several clusters use a publish-subscribe event manager to share topology 
information, monitor events and operator's requests. 
 

 

Figure 31 - ICONA architecture: the data plane is divided in portions interconnected through so-called inter-

cluster links (in red). Each portion is managed by multiple co-located ONOS and ICONA instances, while 

different clusters are deployed in various data centers. 

 
The ICONA control plane is geographically distributed among different data centers, each one 
controlling the adjacent portion of the physical network. Figure 31 shows the aforementioned 
architecture where each cluster is located in a different data center (e.g. ONOS 1a and ONOS 1b are 
co-located instances). To offer the same reliability already available in ONOS, the ICONA application 
runs on top of each instance. Referring on Figure 30, ICONA is deployed in the Application layer, and 
interacts with ONOS using the Northbound - Intent Framework. 
Inside each cluster, a master controller is elected, using a distributed registry. The ICONA master is in 
charge of sharing information and applying decisions, while all the backups are aware of the network 
status, and can become master in case of failure. 
 
The communication between different ICONA instances, both intra and inter-cluster, is currently 
based on Hazelcast [55]. Hazelcast offers a multicast event-based messaging system, inspired by Java 
Messaging System (JMS). Applications (e.g. controllers) can publish a message onto a topic, which will 
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be distributed to all instances of the application that have subscribed to that topic. Hazelcast does not 
have a single point of failure that is not achieved easily by pure JMS solutions. In ICONA, one Hazelcast 
channel is devoted to the intra-cluster communication (e.g. local ONOS cluster) and another one for 
the inter-cluster messages. 
ICONA runs as bundle in the ONOS Karaf container, taking advantages of all the features mentioned 
in Sect. 5.2.  
 
In devising a geographical architecture, covering thousands of square kilometers, a key element is the 
type and amount of information that the different segments of the control plane have to share. 
Control traffic has to be minimized and the system has to optimize is performance in terms of: 

 Offering an up-to-date view of the network, including status of the nodes,  

 Configuring the network devices, 

 Reacting to failures both in data and control plane without disrupting customer's traffic.  
 
Three internal modules implement these features in ICONA (see Figure 31): the Topology Manager, 
the Service Manager and the Backup Manager. In the following Sections an overview of each of these 
components is provided.  

5.3.1 Topology Manager  

The Topology Manager (TM) is responsible to discover the data plane elements, reacts to network 
events, stores in a persistent local database the links and devices with the relevant metrics. To offer a 
partial view of its network portion, each TM shares with the other ICONA clusters the following 
information through the inter-cluster channel: 

 Inter-cluster link (IL): an IL is the physical connection between two clusters. ICONA 

implements an enhanced version of the ONOS discovery mechanism, based on the Link Layer 

Discovery Protocol (LLDP). Each IL is shared with all the clusters tagged by some metrics, such 

as the link delay, available bandwidth and number of flows crossing the link. 

 End-point (EP) list: an EP defines the interconnection between the customer's gateway router 

and the ICONA network. Each cluster shares the list of its EPs and the metrics (bandwidth, 

delay) between these EPs and all the clusters ILs. 

5.3.2 Service Manager  

 
The Service Manager (SM) handles all the interaction between the network operators and the control 
plane. This module offers a REST API used to poll ICONA for network events and alarms, and to manage 
(instantiate, modify and delete) the services. In our initial implementation, we have considered only 
two services: L2 pseudo-wire tunnels and MPLS VPN overlay networks, which are key services in a 
Service provider network. However, the application can be easily extended to provide other 
functionalities. 
 
The implemented services require interconnecting two or multiple EPs that can be controlled by the 
same ICONA cluster or by different ones. The SM computes the overall metrics and chooses the best 
path between two EPs. There are two cases: 

 If they belong to the same cluster, it directly asks ONOS to install an OpenFlow 1.3 [18] MPLS-

based flow path in the physical devices.  
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 If they belong to two different clusters, the SM follows this procedure: 

o It contacts all the involved clusters (e.g. the ones that are crossed by this service 

request) asking to reserve the local portion of the path. 

o As soon as all the clusters have replied to the reservation event (if at least one does 

has a negative reply, the SM releases the path and computes an alternative ones), it 

requests to switch from the reservation status to the installation. Each ICONA cluster 

master then contacts the local ONOS asking to install the flow path in the physical 

devices. 

o If the second step is successful too, the SM ends the procedure, otherwise it asks all 

the clusters to release the resources, computes an alternative route and restarts the 

procedure. 
 
Finally, the SM updates all the ICONA clusters with the new installed service and the relevant 
information. 
While this path installation procedure is slower than the original implemented by ONOS (around three 
times), ICONA cannot assume a strong consistency between the remote databases. In the 
aforementioned ISP scenarios, the amount of time required for a service installation is not a relevant 
metric, but the procedure has to be robust enough to tolerate substantial delays. 
 

5.3.3 Backup Manager  

If a failure happens within the same cluster, ONOS takes care of rerouting all the paths involved in the 
failure. After receiving a PORT_STATUS or LINK_DOWN OpenFlow message, ONOS detects all the 
flows crossing the failed element and computes an alternative path to the destination. Finally, it 
installs the new flows in the network and removes the old ones. 
 
If instead the failure happens between two different clusters (e.g. it involves an IL or one of the two 
nodes that sits at the edge of the IL) then the ICONA's module named Backup Manager (BM) will 
handle the failure. In particular: 

 For each IL, a backup link (BIL) completely decoupled from the primary one, is computed and 

pre-installed in the data plane. The BIL is a virtual link selected among all the available paths 

between the source and destination ICONA clusters, taking into account composite metrics, 

such as the delay, available bandwidth and numbers of flows. 

 When the failure happens, all the traffic crossing the IL is rerouted to the BIL by each ICONA 

edge cluster, without the need to wait for remote instances to share any information.  

 When the rerouting is completed, the new path is notified to all the remote clusters, in order 

to share the same network status.  
 
The amount of time required for the rerouting is particularly relevant in an ISP network because it is 
most directly related to SLAs guaranteed by network operators. 

5.4 Evaluation  
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The purpose of the experimental tests described in this section is to compare ICONA with a standard 
ONOS setup, and evaluate the performances of the two solutions in an emulated environment. 
 
The control plane is always composed of 8 virtual machines, each with four Intel Core i7-2600 CPUs @ 
3.40GHz and 8GB of RAM. While for the ONOS tests all the instances belong to the same cluster, with 
ICONA we have created 2, 4 and 8 clusters, respectively with 4, 2 and 1 instances each.  
The data plane is emulated by Mininet [65] and Netem [56]: the former creates and manages the 
OpenFlow 1.3 [18] network, while the latter emulates the properties of wide area networks, such as 
variable delay, throughput and packet loss. In particular, we have created multiple data plane 
topologies, emulating grid networks and the GÉANT facility using Mininet. Mininet allows specifying 
some useful parameters that can be associated to links and switches, such as bandwidth, delay and 
packet loss. In addition to the data plane impairments, we have also set the control plane 
characteristics using Netem. This tool has been used to set bandwidth, delay and packet loss in the 
interfaces of the 8 VMs running the control plane and interconnecting it with the data plane. 
Both solutions (ONOS and ICONA) have been tested with both a regular (grid) topology and with the 
topology of the GÉANT [1] pan-European network.  
It is important to highlight that the current ONOS release (Avocet 1.0.1) is focusing on functions and 
correctness, while Blackbird, to be released in March, will dramatically improve the internal 
performance. For these reasons, the results presented in this section should not be considered as 
benchmark. 
 

5.4.1 Reaction to Network Events  

5.4.1.1 Grid networks  

The first performance metric is the overall latency of the system for updating the network state in 
response to events; examples include rerouting traffic in response to link failure or moving traffic in 
response to congestion. 
To evaluate how the system performs when the forwarding plane scales-out, we have selected some 
standard grid topologies, with a fixed link delay of 5ms (one-way) and then we have been comparing 
the latency needed to reroute a certain number of installed paths when an inter-cluster link fails for 
both ONOS and ICONA with various clustering settings. 

 
We define as overall latency the amount of time that both ONOS and ICONA require to react to the 
failure as the sum of: 

 The amount of time for the OpenFlow messages (PORT_STATUS and FLOW_MOD) to 

traverse the control network,  

 The alternative path computation,  

 The installation of new flows in the network devices and  

 The deletion of the pre-existing flows.  
In particular, we have been running several simulations by installing one thousand paths in the 
network and then by making fail an inter-cluster link with at least one hundred pseudo-wires running.  
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Figure 32 - Average, maximum and minimum latency to reroute 100 paths in case of link failure for ONOS and 

ICONA (2, 4 and 8 clusters) 

 
Figure 32 shows the latency (avg, min, max) required for the different solutions to execute the four 
tasks previously mentioned. Each test has been repeated 20 times. Despite the same mechanism used 
by ICONA to compute and install the new paths, the difference is mainly due to the following reasons:  

 Each ICONA cluster is closer to the devices, thus reducing the amount of time required for 

OpenFlow messages to cross the control channel and  

 The ICONA clusters are smaller, with fewer links and devices, thus decreasing the computation 

time and the overall numbers of flows to be installed and removed from the data plane. 

 

5.4.1.2 GÉANT network 

The same metrics have been evaluated on the GÉANT topology (see Figure1).  
Circuits have various one-way delays (from 10 to 50ms) and throughputs (from 1 to 100Gbps).  
 

Table 4 - GÉANT network: average, maximum and minimum latency to reroute 100 paths in case of link failure 

for ONOS and ICONA (2, 4 and 8 clusters) 

Control Plane Average Latency [ms] Minimum Latency [ms] Maximum Latency [ms] 

ONOS 297 284 308 

ICONA 2 Clusters 272 261 296 

ICONA 4 Clusters 246 232 257 

ICONA 8 Clusters 221 199 243 
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Table 4 depicts similar results as the previous test. ONOS has been compared with three different 
ICONA deployments, with 2, 4 and 8 clusters, respectively with 4, 2 and 1 instances each. While having 
the same number of VMs running the control plane software, their geographical distribution improves 
the overall performance of the system. 
While the network is smaller than the 10*10 grid topology, with 41 switches and 58 bi-directional 
links, the higher delay in the data plane requires an additional amount of time to reconverge. 
 

5.4.2 Startup Convergence Interval 

This second experiment measures the overall amount of time required for both solutions to re-
converge after a complete disconnection between the control and data planes. The tests have been 
performed over the GÉANT topology, and replicated 20 times. Table 5 shows the average, maximum 
and minimum values in seconds. 
 

Table 5 - Amount of time required to obtain the network convergence after disconnection for ONOS and 

ICONA 

Control Plane Average Latency [s] Minimum Latency [s] Maximum Latency [s] 

ONOS 6,98 6,95 7,06 

ICONA 4 Clusters 6,96 6,88 7,02 

 
 

The result shows that ICONA and ONOS require comparable time intervals to return to a stable state, 
in case of a complete shutdown or a failure of the control plane. 
 

5.5 Integration of ICONA and OSHI 

Conceptually the ICONA and OSHI solutions can interwork, as ICONA is using ONOS; which in turn is 

using OpenFlow to control the network devices and an OSHI node is just a specific network device.  

On the other hand, some details needs to be fixed for having a running interoperability, considering 

that ONOS by default is configured to operate on a pure layer 2 network, while we introduce the 

Hybrid IP/SDN networking. 

1) Within the ONOS controller the “automatic layer 2 forwarding” of packets needs to be 

disabled (the module is called iForwarding). 

2) The handling of ARP within ONOS needs to be disabled as well (in particular the ProxyArp 

module and the HostLocationProvider module, we do not need them) 

3) For the IP VLL service, the implementation of MPLS tunnels in ONOS (provided by DREAMER) 

does not support the second MPLS path based on MPLS multicast Ethertype which we use to 

carry ARP packets in the VLLs. Either static ARP is added at the VLL end-point or the support 

for the second MPLS path based on MPLS multicast Ethertype should be added 
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4) For the PW service, the implementation of MPLS tunnels in ONOS (provided by DREAMER) 

does not support hop-by-hop MAC rewriting. The functionality of the PW should be preserved, 

but the customer edge virtual MAC of the GRE endpoint will be exposed in the core.  

 

All these features require that ICONA diverge from ONOS, because OSHI behavior can only be obtained 

with modifications inside the core modules of ONOS. In order to maintain ICONA as general as possible, 

thus allowing other researchers to use and contribute to it, we choose not to fully integrate the OSHI 

data plane in the main ICONA software release, but we are planning a joint demo that will be probably 

hosted at the next ONS conference (June 2015), in which we will show how ICONA and OSHI can 

smoothly interoperate. This code base will then be uploaded to GitHub in a separate branch.  
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6 Future work 

6.1 OSHI: gap analysis, ongoing and future work 

Let us consider solution for PW encapsulation described in section 3.3.4, based on GRE tunneling 

performed by the ACE. It has been designed as a replacement of the more efficient Ethernet over 

MPLS (EoMPLS) encapsulation described in [35], which cannot be realized by the current version of 

Open vSwitch. The GRE tunneling introduces a transport and a processing overhead. The transport 

overhead is 20 (IP header) + 16 (GRE header) bytes for each packet. The processing overhead depends 

on the implementation architecture, our solution (shown in Figure 11) was not meant to be highly 

efficient, but only to demonstrate the feasibility of the approach with a working component. We do 

not plan to improve the efficiency of the solution, rather we believe that native Ethernet over MPLS 

(EoMPLS) encapsulation should be provided by open source switches and we are considering to 

extend the Open vSwitch or other open source switches to support EoMPLS. 

Assuming that a switch supports EoMPLS, a second important gap to be filled is the lack of support for 

such tunneling operations in the OpenFlow protocol. Note that the lack of encapsulation support in 

OpenFlow does not only concern EoMPLS, but also other tunneling solutions like GRE, VXLAN, Ethernet 

in Ethernet. In fact, while it is possible to some extent with OpenFlow to control GRE and VXLAN 

packets already tunneled (and specific matches have been introduced in OF 1.4 for VXLAN), it is not 

possible to control the encapsulation (i.e. pushing the GRE, VXLAN or simply an additional Ethernet 

headers) and decapsulation (i.e. popping the header) operations. Currently, external tools are needed 

to manage the tunnel end-points (e.g. using the switch CLIs - Command Line Interfaces), with added 

complexity in the development, debug and operations. Having the possibility to configure the 

tunneling end-points on a OF capable switch from the SDN controller by means of the OpenFlow 

protocol would be a great simplification in the management of SDN based services.  

We observe that the described OSHI solution represents an open starting point to design and 

implement additional “core” functionality and user oriented services following the SDN paradigm. As 

for the core functionality we are now considering protection/restoration and traffic engineering 

mechanism. For traffic engineering we have already implemented a flow assignment heuristic for 

optimal mapping of PWs with required capacity on the core OSHI links. As for additional services, we 

are considering the realization of the Layer 3 VPNs on top of the PW service. Following the same 

approach used for the VSS service, the idea is to deploy virtual router instances within the OSHI nodes 

that can exchange routing information with routers in the CE nodes. Finally, we mention our ongoing 

work on an Open Source implementation of Segment Routing [33] on top of OSHI. All these ongoing 

efforts are reported on the OSHI web page [26], including links to preliminary results and source code. 
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6.2 ICONA: future work 

A preliminary release of ICONA is available under permissive open source license (Apache 2.0) and we 
are collaborating with ON.Lab to evaluate the opportunity to include some of the ideas developed 
therein as part of the official release of ONOS. Future improvements of ICONA will focus on solutions 
to improve the path installation procedure and on combining clustering design techniques with ICONA 
deployment in order to guarantee the best tradeoff between performances and replication of clusters 
in different network locations.  
 
Moreover, while this first prototype already implements the core functionalities of the envisioned 
architecture, it still misses some key features, such as: 

 A more advanced routing algorithm, evolving the Shortest Path First one, that takes in account 

advanced metrics between remote data plane clusters 

 The service portfolio needs to be extended to support customer’s requests and use cases 

 The current communication channel, based on JMS Hazelcast, can be further investigated, and 

maybe replaced with another mechanism 
 
However, taking in account that all the software is based on a well-known open source control plane 
(ONOS), we would like not only to extend the work done in other projects, but also to share our results 
with the community, waiting for interested researchers to test and contribute to ICONA.  
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7 Project impact 

The highlights of DREAMER impact are reported in the following bullet list. 

o The OSHI nodes source code has been released and we have already received some expression 
of interest and feedback by other researchers that are using it. In particular we have opened 
a public mailing list about OSHI, it currently has 17 subscriber, of which 11 are people external 
to the project. 4 people external to the project have posted questions and feedback so far. 

o The Topology 3D tool is re-usable for designing and executing SDN experiment over Mininet 
emulator and over different testbeds.  

o The project has contributed to the design and development of the ONOS controller. The MPLS 
intent has been developed: now it is possible to created MPLS label switched path using ONOS. 

o The ICONA application for the coordination of distributed clusters of ONOS controller will 
contribute to the realization of such coordination in future releases of ONOS controller. 

o The project has contributed to the progress of the Open vSwitch Open Source project. In 
particular it has provided a feedback on the support of multiple nested MPLS labels. The OVS 
version that was officially released was not able to properly handle MPLS label stacking. 
Thanks to our problem reports and following some iterations on the ovs-discuss mailing list, 
the issue has been fixed by the core OVS development team. 

o The project has published 2 papers, one demo paper and a poster to refereed conferences, 
submitted one more conference paper and a journal paper, and has given 3 presentations to 
public events (see sections 7.1 and 7.2 for the details). The project will showcase a demo at 
the 1st IEEE Conference on Network Softwarization (Netsoft 2015), London, UK, 13-17 April 
2015. The project is preparing a demo between ON.LAB-Internet2 and GÉANT-DREAMER 
testbeds to be shown at ONS 2015 (15-18 June 2015, Santa Clara US). 

o The DREAMER project has organized the Workshop “Software Defined Networking and its 
applications: where are we now?” 
(http://netgroup.uniroma2.it/twiki/bin/view/DREAMER/SdnWorkshop), held in Rome, June 
9th 2014, which saw the participation of 60 people from academia and industry. 
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7.1 Scientific papers, demo, posters 

 S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, E. Salvadori, 

“Open Source Hybrid IP/SDN networking (and its emulation on Mininet and on distributed SDN 

testbeds)”, 3rd European Workshop on Software Defined Networks, EWSDN 2014, 1-3 September 2014, 
Budapest, Hungary 
http://arxiv.org/abs/1404.4806 

 S. Salsano, N. Blefari-Melazzi, F. Lo Presti, G. Siracusano, P. L. Ventre, 

“Generalized Virtual Networking: an enabler for Service Centric Networking and Network Function 

Virtualization”, 16th International Telecommunications Network Strategy and Planning Symposium, Networks 
2014, 17-19 September 2014 
http://arxiv.org/abs/1409.5257 

 Mauro Campanella, Luca Prete, Pier Luigi Ventre, Matteo Gerola, Elio Salvadori, Michele Santuari, Stefano 
Salsano, Giuseppe Siracusano 

"Bridging OpenFlow/SDN with IP/MPLS", poster presentation at TNC2014, 19 - 22 May 2014, Dublin, Ireland 
http://netgroup.uniroma2.it/Stefano_Salsano/papers/DREAMER-tnc2014-poster.pdf 

 M. Gerola, M. Santuari, E. Salvadori, S. Salsano, P. L. Ventre, M. Campanella, F. Lombardo, G. Siracusano,  

"ICONA: Inter Cluster ONOS Network Application", demo paper accepted to 1st IEEE Conference on 
Network Softwarization (Netsoft 2015), London, UK, 13-17 April 2015 
http://netgroup.uniroma2.it/Stefano_Salsano/papers/ icona_netsoft2015_demo.pdf 

 M. Gerola, M. Santuari, E. Salvadori, S. Salsano, M. Campanella, P. L. Ventre, A. Al-Shabibi, W. Snow, 

"ICONA: Inter Cluster ONOS Network Application", submitted to SOSR 2015 - ACM Sigcomm Symposium on 
SDN Research, Co-located with Open Networking Summit 2015 
http://arxiv.org/abs/1503.07798 

 S. Salsano, P. L. Ventre, F. Lombardo, G. Siracusano, M. Gerola, E. Salvadori, M. Santuari, M. Campanella, 

"OSHI - Open Source Hybrid IP/SDN networking and Mantoo - a set of management tools for 

controlling SDN/NFV experiments", to be submitted to IEEE Transactions on Network and Service 
Management 

7.2 Presentations, posters, videos 

 Presentation of "Open Source Hybrid IP/SDN networking (and its emulation on Mininet and on 

distributed SDN testbeds)" (see full paper info above) at EWSDN 2014  
http://netgroup.uniroma2.it/Stefano_Salsano/papers/salsano-oshi-ewsdn-2014-pptx.pdf 

 Stefano Salsano, Pier Luigi Ventre (speaker), Luca Prete, Giuseppe Siracusano, Matteo Gerola, Elio Salvadori, 

"OSHI - Open Source Hybrid IP/SDN networking (and its emulation on Mininet and on distributed 

SDN testbeds)", talk given at GTTI 2014 Annual Meeting, June 19, 2014, Palermo, Italy. Selected as winner of 

"Premio Carassa 2014" for the best paper on the "Networking" topic co-authored and presented by a young 
researcher. 
http://netgroup.uniroma2.it/twiki/pub/DREAMER/WebHome/oshi-gtti14-v11ss-external-video.pdf 

 Pier Luigi Ventre, Stefano Salsano, Giuseppe Siracusano, Francesco Lombardo, 

"OSHI video demo June 2014" (oshi-v5.wmv file (80 MB))  
https://www.dropbox.com/s/5ahmuiqlcr3wnue/oshi-v5.wmv 
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 Stefano Salsano, 

"The DREAMER project", presentation in the session "Looking ahead to network services", GEANT Symposium, 
Tuesday 24th Feb, Athens, Greece 
http://netgroup.uniroma2.it/twiki/pub/DREAMER/WebHome/dreamer-gn3plus-symposium-v08ss.pdf 

 "DREAMER video demo February 2015" @ GEANT Symposium 
https://www.dropbox.com/s/kyolyns4bqyrkxx/dreamer-gn3plus-symposium-2015-v02.mp4?dl=0 
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8 Conclusions 

The DREAMER project focused on introducing and exploiting Software Defined Networking (SDN) 

capability in carrier grade IP backbones. The objective of the DREAMER proposal was to investigate 

how a network based on an OpenFlow/SDN control plane can provide the same functionalities of an 

IP/MPLS control plane, offering a carrier grade approach to resiliency and fault management. 

DREAMER considered the operational requirements coming from the GARR National Research and 

Education Network (NREN) to drive the design of the solutions.  

The DREAMER project had two main dimensions: scientific and experimental. The scientific dimension 

considered a resilient SDN system able to smoothly operate in case of link and node failures, by 

providing resiliency to the controller element and by promptly restoring paths in the data plane. The 

experimental dimension implemented and validated the designed modules over the testbed facilities 

provided by GÉANT.  

The project has contributed in three main areas of OpenFlow/SDN research: data plane, control plane 

and experimental tools.  

As for the Data Plane, IP and SDN hybrid networking has been considered, by designing the “OSHI” 

solution (Open Source Hybrid IP / SDN networking) and implementing it over Linux OS. An OSHI node 

combines traditional IP forwarding/routing (with OSPF) and SDN forwarding implemented by means 

of Open vSwitch in a hybrid IP/SDN node. No open source solutions for such a hybrid node were 

available. Using the OSHI solution, DREAMER demonstrated services like Layer 2 Pseudo Wires (PW) 

and Layer 2 Virtual Switches over an IP backbone. 

As for the Control Plane, the project exploited and contributed to the development of ONOS Open 

Source controller. Thanks to an official agreement of the partners with ON.LAB (a research lab on SDN 

based in San Francisco), the DREAMER project partners were able to work on the ONOS source code 

before it was released to the general public. The contribution of the project is a solution to distribute 

the control of a geographical scale SDN network among a set of clusters of ONOS controllers. The 

solution is called “ICONA” (Inter Cluster ONos Application). ONOS features provide data plane 

resilience, as well as control plane resilience for a single cluster of controllers in the same data center. 

As for the experimental tools, the project has developed the “Topology 3D” tool (Topology Designer, 

Deployer & Director) that provides an easy design, deployment and control of the SDN experiments. 

It consists in a web front end that allows to graphically design a network topology (made of L3 routers, 

L2 switches, end devices) and to configure the set of services to be provided on top. Then the topology 

can be automatically deployed as an overlay network over a distributed testbed (e.g. the GÉANT 
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testbed) or within a Mininet emulator. Finally, the web front end allows to access the shell interface 

on each node of the deployed topology. 

DREAMER has implemented prototypes of the proposed solutions based on Open Source tools and 

has contributed to the development of some of these tools. Therefore DREAMER is having an impact 

towards the availability of a truly open ecosystem for carrier grade backbone IP networks based on 

the SDN paradigm. See also section 8.2 for a discussion on taking DREAMER results to the real world. 

Finally, we would like to highlight impact and future fostered by the DREAMER project. 

o The hybrid IP/SDN approach is of interest for the GÉANT evolution. The definition of provided 
services (Pseudo Wires, Virtual Layer 2 Switches) and the SDN architecture to control such 
services proposed by DREAMER is of interest of the GÉANT community. It naturally fits in the 
“Future Network Services” topic that will be addressed by the GÉANT community in the short 
term future. 

o The research will continue in GN4 year 1 in the JRA2 activity. 

o The Topology 3D tool could be easily extended to support the GTS (GÉANT Testbed Service), 
in particular it could be used to produce a testbed description in the DSL format starting from 
a graphical representation. 

o The DREAMER project has identified limitation in the OpenFlow protocol and in the OpenFlow 
capable open source switches (e.g. Open vSwitch) as far as the support of Ethernet over MPLS 
encapsulation. These limitations have been circumvented with workaround in the DREAMER 
project. The development of cleaner and more efficient solutions, which could also be 
improved with extensions to the OpenFlow protocol is of great interest for a continuation of 
the project. 

o Further services and applications on top of the already developed solutions can be 
investigated. We are already focusing on a SDN based segment routing solution exploiting the 
DREAMER results (OSHI Open Source nodes and network architecture). 

 

8.1 Comparison of final results with requirements 

The text within frames is extracted from section 2 (Requirement analysis) 

The functionalities that DREAMER has to provide, with carrier grade characteristics are: 

 virtual point to point circuit creation at layer 2 (emulation of Ethernet circuits), with and 

without automatic resiliency 

DREAMER has designed and implemented the IP VLL and Layer 2 PW services in the OSHI nodes. Both 

services have been realized with SDN Based Paths using MPLS labels. The ONOS controller has been 

modified to support the creation of MPLS paths, this is meant to be the “carrier grade” 

implementation at the control plane level, as it relies on all the scalability and resilience characteristics 

of ONOS. An implementation based on Ryu controller is also available, which is useful for fast 

prototyping and proof of concepts. 
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 a VPN functionality similar to the one that can be created with MPLS (the BGP/MPLS solution 

uses BGP to distribute VPN routing information across the provider's backbone and MPLS to 

forward VPN traffic from one VPN site to another) 

DREAMER has implemented a Layer 2 virtual switch service using OSHI nodes, called VSS (Virtual 

Switch Service). This service corresponds to the VPLS (Virtual Private LAN Service) service [37], but 

uses an SDN approach for the service establishment. The OSHI node architecture that has been 

designed and implemented makes it relatively easy to implement also a Layer 3 VPN like the 

BGP/MPLS, because a separate Linux network namespace is used in the Provider Edge nodes to 

process the packets of a given customer.  

 traffic engineering of flows (implementation of specific algorithms is out of scope for 

DREAMER project) 

The use of Traffic Engineering algorithms in the selection of paths performed by the controller can be 

decided by the controller itself (or by the “application” running on top of the controller). This was not 

considered among the high priority tasks in the requirement analysis. DREAMER has started some 

exploratory work on this using the control plane implementation based on the Ryu controller. For 

traffic engineering we have implemented a flow assignment heuristic for optimal mapping of PWs with 

required capacity on the core OSHI links. The optimality criteria was related to the equalization of 

maximum link load.  

Given the multi-domain nature of the European NREN and the need to provide virtual private 

networks that span more than one NREN, the DREAMER architecture and functionalities it should be 

possible to extend it toward multi-domain stitching of virtual circuit at layer 2 and at layer 3, either 

manually or automatically. 

The ICONA inter cluster solution from an algorithmic point of view lends itself also to be revisited as 

inter-domain solution (no work in this direction has been performed during the DREAMER project 

timeframe). 

Two architectural aspects, will be specifically targeted:  

i) the control plane controller resilience and its distribution;  

The ONOS controller is designed to address resilience. It provides resilience with respect to controller 

failures by having a local cluster of controller and a shared data base. The ICONA solution has targeted 

the distribution of the control plane across a set of controller clusters that can be placed in remote 

geographical locations. Only single-domain scenarios have been considered. 

ii) the data plane resilience, with carrier grade fast restoration mechanism. 

The ONOS controller is able to enforce mechanism for data plane resilience, including fast restoration. 

The performance of some mechanisms depend on the delay between the controller and the controlled 

network devices. Therefore the ICONA multi-cluster solution is able to reduce this delay by distributing 

the control among a set of clusters placed in remote locations. 
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8.2 Taking DREAMER to the real world 

The work done on the OSHI architecture with the development of the Open Source OSHI node is 

already usable for performing experiments and emulations of Hybrid IP/SDN networking on single 

nodes (using Mininet) or on a distributed testbed. It does not target line speed performance 

implementation in real Provider Edge or Core Routers node. In this respect the Mantoo tools represent 

the natural complement, helping the experimenters to setup and manage complex emulated hybrid 

IP/SDN networks. 

The work done on ICONA architecture will be pushed to the mainstream of the ONOS controller. The 

setup of MPLS paths has already been integrated in the ONOS mainstream and represent a notable 

contribution developed by DREAMER. The ICONA results will be discussed within the ONOS 

community, as the DREAMER partners intend to push these results and to contribute to their 

integration into ONOS. 

The contribution, whether or not is fully or partially accepted is a positive contribution to the 

development of a commercial product that satisfies the requirements. If accepted, its further 

implementation developments and  maintenance will also be undertaken by the ONOS community, 

possibly benefitting by some of the improvements described in section 6.2.  
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9 Appendix 

This section provides a brief description of the software released, and reports pointer to the released 

code. In particular, the Appendix includes the software of the Hybrid IP/SDN node (T 1.3), of the SDN 

mechanisms to support resilience (T 1.4), and of the deployment tools (T 1.5). Topology Deployer and 

Mantoo have been developed as components parts of the T 1.5. 

All the code released for this milestone is using the “liberal” Open Source license Apache 2.0 [64] and 

links to public git repositories are given in this appendix. 

Appendix A reports a brief description of the Hybrid IP/SDN node (OSHI) and the related project 

(Dreamer-Setup-Scripts). The appendix ends with pointers to the released code, links for the how-to 

documents and for ready-to-go Virtual Machine, already configured with all the OSHI software, where 

the experimenter can run OSHI networks in the Mininet [65] emulation environment. 

Appendix B includes the DREAMER Network Operating System (ONOS and ICONA) installation and 

configuration procedures. The guide will help the user in the whole process of setting up the hardware, 

install the required software packages and configure them to have a running environment. Finally, the 

latest sub-chapter introduces the console interface, through which the operator can interact with 

ICONA, to control and monitor the underlined SDN network. 

Appendix C describes the Mantoo project, a set of Open Source management tools for the emulation 

of the DREAMER solutions over the Mininet emulator and over distributed testbeds. The section ends 

with pointers to the released code, and a link for the how-to document, which explains how to perform 

an experiment with the Mantoo suite. 

Appendix D illustrates the Topology Deployer project, which helps the experimenter and relieves 

him/her from an huge configuration effort in the deployment of an arbitrary layer 2 topology between 

a set of virtual machines. Moreover the section provides the hyperlinks of the released code and the 

pointer to a brief how-to document. 
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9.1 Appendix A: OSHI 

The data plane architecture founds its operation on an Hybrid IP/SDN node, called Open Source Hybrid 

IP/SDN (OSHI). OSHI node combines an OFCS, an IP forwarding engine (IP FE) and an IP routing daemon. 

The prototype is fully based on Open Source components, in our current implementation, the OFCS 

component is realized using OVS, the IP FE is the IP networking of the Linux kernel and finally Quagga 

acts as the routing daemon (in particular for our experiments, we have activated the OSPF daemon). 

We have developed two design for the OSHI architecture: 

i) VLAN based approach uses VLAN tags to realize SBP and to support the coexistence 

between IP based forwarding and SBP forwarding; 

ii) MPLS based approach leverages the MPLS labels to realize the same functionalities; 

The project related to the OSHI node is Dreamer-Setup-Scripts. The code of the project can be 

downloaded from our public git repository [66]. The last version released is the v1.0.5-beta. It includes 

the scripts to install and configure all the OSHI dependencies, and transforms a VM in an Hybrid node. 

In particular it provides the following scripts: 

 OSHI nodes setup and configuration bash scripts; 

 End-point node (CE and Controllers) setup and configuration bash scripts; 

 IP-router setup and configuration bash scripts; 

The aforementioned project contains also the Management Scripts, which have been used to 

automate and facilitate the setup, the configuration process and finally the deployment of an 

experiment both on GOFF and OFELIA facilities. We use a management server to coordinate the 

needed operations, communicating with the rest of the experiment machines through the testbed 

management network. It uses the Management Scripts project, based on DSH, for distributing and 

executing remote scripts and commands. 

As for instructions, the project does not have a real README file, but we have produced with the same 

purposes a set of slides that tells our experience over the OFELIA/GOFF SDN testbeds, finally describes 

the Dreamer-Setup-Scripts project and provides the how-to for the experiments. The slides can be 

downloaded from [67] and the last version released is the 0.4. 

The OSHI VM can be downloaded from [68], it has been configured with all the OSHI software 

dependencies, and through this the experimenter can run OSHI networks in the Mininet emulation 

environment. 
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9.2 Appendix B: ICONA software 

The code prototype is publicly available on GitHub [52] and integrates ONOS and ICONA application. 

ONOS and ICONA installation and configuration procedure is presented in the next section. The ICONA 

usage guide is described in the last section. 

9.2.1 Installation procedure 

9.2.1.1 Requirements 

The minimum requirement for ONOS is a VM based on Ubuntu Server 14.04 LTS 64-bit and at least 

with 2GB of RAM and 2 processor. The DREAMER control plane has been tested with 4GB of RAM and 

2 vCPU. 

The software requirements are: 

 Java 8 JDK (Oracle Java recommended; OpenJDK is not as thoroughly tested): 

$ sudo apt-get install software-properties-common -y 

$ sudo add-apt-repository ppa:webupd8team/java -y 

$ sudo apt-get update 

$ sudo apt-get install oracle-java8-installer oracle-java8-

set-default –y 

$ export JAVA_HOME=/usr/lib/jvm/java-8-oracle 

 Apache Maven (3.0 and later) 

 Git 

 Apache Karaf (3.0.2 and later) binary: 

o wget http://mirrors.muzzy.it/apache/karaf/3.0.2/apache-

karaf-3.0.2.tar.gz 

o mv apache-karaf-3.0.2.tar.gz ~/Application/ 

o cd ~/Application/ && tar –xf apache-karaf-3.0.2.tar.gz/ 

 

 Network devices compatible with OpenFlow 1.3 (like OSHI or 

Mininet 2.2.0 [65]) 

9.2.1.2 Installation  

 Clone the repository into the home: 

git clone 

https://github.com/SmartInfrastructures/dreamer.git 
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 Export the ONOS_ROOT environment variable: 

$ export ONOS_ROOT=~/dreamer 

$ source $ONOS_ROOT/tools/dev/bash_profile 

 

 Build the DREAMER control plane: 

$ cd dreamer 

$ mvn clean install 

 

9.2.2 Configuration procedure 

Follow the next steps to configure ONOS and ICONA: 

 Karaf configuration: 

Open the ~/Application/etc/org.apache.karaf.features.cfg 

file (e.g., nano 

~/Application/etc/org.apache.karaf.features.cfg) 

Edit “featuresRepositories” and append 

“mvn:org.onosproject/onos-features/1.0.0/xml/features” 

Edit the “featuresBoot” to be equals to 

“featuresBoot=config,standard,region,package,kar,ssh,managem

ent,webconsole,onos-api,onos-core,onos-cli,onos-

openflow,onos-app-mobility,onos-app-tvue,onos-app-icona” 

 

 ICONA requires some additional configurations for the communication between clusters. In 

particular, ICONA leverages on the Intra and Inter Hazelcast channels. Two example files are 

provided in the repository under the ~/dreamer/conf/. ONOS instead uses the 

hazelcast.xml under the ~/dreamer/tools/package/etc/hazelcast.xml.  

The configuration is spitted in two part, one related to a single local cluster (intra-cluster and 

ONOS) and the other one for the communication across different cluster (inter-cluster). These 

files should be modified for each ONOS instance according to the following instructions: 

o hazelcast.xml and hazelcast-icona-intra.xml are configuration 

limited to the local cluster and as a consequence each instance inside a predefined 

cluster should have same configuration files containing the multicast IP address and 

the IP address of the Ethernet port used for the internal cluster communication 

respectively: 

<multicast enabled="true"> 

<multicast-group>MULTICAST IP (e.g., 224.2.2.1 

</multicast-group> 

<multicast-port>54327</multicast-port> 

</multicast> 

 

<interfaces enabled="true"> 
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            <interface>IP ADDRESS OF ETHERNET 

PORT (e.g., 10.216.160.*) </interface> 

</interfaces> 

 

 

hazelcast.xml and hazelcast-icona-intra.xml should have different 

multicast IP addresses.  

o hazelcast-icona-inter.xml configures the communication with different 

clusters across geographical locations. As a consequence the multicast IP address 

should be equal across all the ONOS instances also belonging to different clusters. An 

IP address of interface permitting the communication with different clusters should 

be indicate as aforementioned. 

After the modification of files, run the following commands: 

$ cp ~/dreamer/tools/package/etc/hazelcast.xml 

~/Applications/apache-karaf-3.0.2/etc/ 

$ cp ~/dreamer/conf/hazelcast-icona-*.xml 

~/Applications/apache-karaf-3.0.2/conf/ 

 ONOS, and sub sequentially ICONA, requires network devices to point to multiple controller 

instances belonging to the same cluster. OpenFlow devices support natively multiple 

controllers per device. We tested our prototype against Open vSwitch, that can be configured 

adding the following command: 

$ sudo ovs-vsctl set-controller SWITCH-NAME tcp:CTL-

IP:CTL-PORT tcp:CTL-IP:CTL-PORT 

9.2.3 Running procedure 

The ICONA application developed on top of ONOS permits to: 

1. Discovery, share and update the geographical topology. 

2. Install Ethernet pseudo wire exploiting the usage of MPLS-Label switched path between end-

points. 

After the installation procedure, run this command in each VM to launch ONOS that will automatically 

load also ICONA on top of each instance: 

$ karaf clean 

It is possible to verify the expected behaviour of all the components retrieving the status of the 

modules with the command on the ONOS console: 

onos> bundle:list 
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and it should show a line with the ICONA application started like:  

 139 | Active |  80 | 1.1.0.SNAPSHOT | onos-app-icona 

9.2.4 Accessing the ICONA Console 

ICONA exposes different information through the ONOS console e.g.,: 

 ONOS clusters interconnected through ICONA: 

onos> icona:clusters  

  id=DREAMER, lastSeen=01/29/2015 15:25:04 

  id=DREAMER-42, lastSeen=01/29/2015 15:28:04 

 

 

 Topology information shared across the inter-channel: 

onos> icona:topology  

  Clusters=2, InterLinks=2, EndPoints=4 

 

 

 Detailed information on the End-points or Interlink: 

onos> icona:endpoints  

  Cluster=DREAMER, SwId=of:000000000000000f, Port=2 

  Cluster=DREAMER, SwId=of:000000000000000b, Port=3 

  Cluster=DREAMER-42, SwId=of:0000000000000012, Port=1 

  Cluster=DREAMER-42, SwId=of:0000000000000013, Port=3 

 

ICONA provides the installation the so-called Ethernet pseudo-wire between end-points. The requests 
can be done to each ICONA instance through the ONOS console and that instance will then inform the 
local master that will take care of the request. If the path crosses multiple clusters, the master will 
manage the installation and at the end a MPLS label-switched path is installed across all the involved 
clusters. The command for the pseudo wire instantiation is the following: 

onos> icona:add-pseudowire-intent IngressEndPoint EgressEndPoint 
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9.3 Appendix C: Mantoo 

Mantoo [69] is a project meant to support SDN experiments over emulators and distributed testbeds. 

Mantoo is able to drive and help the experimenters in the three phases that compose an experiment: 

design, deployment and control. Mantoo includes an extensible web-based graphical topology 

designer providing different layered network “views” (e.g. physical interconnections, control 

relationships with SDN controllers, end-to-end service relationships among nodes). The framework is 

able to validate a topology against a configurable set of constraints and then to automatically deploy 

the topology over a Mininet emulator or a distributed SDN testbed, like Ofelia and the Géant 

OpenFlow Facility. Mantoo offers the ability to access nodes by opening consoles directly via the web 

GUI. Finally, Mantoo provides tools for evaluating the performance of the deployed solution [74]. 

Mantoo includes the Topology 3D, in fact it allows to design an OSHI network topology (both aspects 

of the data plane and of the control plane) and to plan also the services, which have to be guaranteed 

for the CEs. The topologies are exported in JSON format, and the project Dreamer-Topology-Parser-

And-Validator [70] provides the parsing functionality needed by the Topology Deployer project. 

The code related to the Mantoo project can be downloaded from a public repository on github [69]. 

The latest version released is the v1.0-beta. Currently, it includes the support for the Mininet 

emulation environment. The repository includes a README file, where we explain how to install the 

components of the Mantoo project and deploy it on a server. A how-to is available at [73], providing 

a walkthrough on the core functionality of the project. 
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9.4 Appendix D: Topology Deployer 

In the current release of the Mantoo project is not possible to realize the deployment over distributed 

testbeds, the support will be added in the next releases, so the Topology Deployer project has a key 

role in the OSHI experiments over the distributed testbeds. It is composed by python modules that 

are able to automatically produce the configuration files necessary for emulating a given topology, 

composed of access and core OSHI nodes (OSHI-PE and OSHI-CR) and of CE routers. This includes the 

automatic configuration of IP addresses, of dynamic routing (OSPF daemons), and of VXLAN/OpenVPN 

tunnels in all nodes, therefore it relieves the experimenter from a huge configuration effort. 

The configuration files generated by the deployer have to been uploaded on a site reachable from the 

testbed or uploaded in each VMs belonging to the experiment. In order to realize the designed 

topology we have to provide for each machine the private configuration files and then run the config 

script (it is part of Dreamer-Setup-Scripts project). The automatic deployment is realized through the 

Management Scripts (They also part of the project Dreamer-Setup-Scripts), that are able to download 

the configuration files for all the testbed machines at once and execute the config script. The complete 

procedure has been described in [67]. 

The code related to the Topology Deployer is collect under the repository called Dreamer-Testbed-

Deployer, and it can be downloaded from our public git repository [71]. The last version released is 

the v1.1-beta. It includes scripts to automatically generate the configuration files for the Dreamer – 

Setup – Scripts project, in particular the code released contains: 

i) the automated generation of OSHI experiments configuration files (they include also 

the configuration of the CEs and OpenFlow controllers); 

ii) the automated generation of Plain IP router experiments configuration files (they 

include also the configuration of the End points); 

iii) the automated generation of the configuration of the layer 2 topology based on UDP 

tunnels (VXLAN or OpenVPN). 

As for instructions, the project has a README file, moreover we have realized also a how-to [72], that 

explains step by step how to run the project in order to generate the configuration files of a given 

topology. 
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Glossary 

ACE ACcess Encapsulator 

BIL Backup Inter cluster Link 

CE Customer Edge 

CLI Command Line Interface 

CR Core Router 

DSH Distributed SHell 

EoMPLS Ethernet over MPLS 

EP End Point 

GOFF GÉANT OpenFlow Facility 

ICONA Inter Cluster ONos Application 

IL Inter cluster Link 

IP FE IP Forwarding Engine 

IPoMPLS IP over MPLS 

JMS Java Messaging System 

LME Local Management Entity 

LSP Label Switched Path 

Mantoo Management tools 

MT Measurement Tools 

NIB Network Information Base 

NOS Network Operating System 

NREN National Research and Education Network 

OCF OFELIA Control Framework 

OF OpenFlow 

OFCS OpenFlow Capable Switch 

ONOS Open Networking Operating System 

OSHI Open Source Hybrid Ip/sdn 

OVS Open vSwitch 

PE Provider Edge 

PW Pseudo Wire 

PWE3 Pseudo Wire Emulation Edge  

SBP SDN Base Path 

SDN Software Defined Networking 

SM Service Manager 

TM Topology Manager 

Topology 3D Topology and Service Design, Deploy, Direct 
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VBP VSS Bridging Point 

VLL Virtual Leased Line 

VPLS Virtual Private Lan Service 

VSS Virtual Switch Service 

VTEP Virtual Tunnel End Point 
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