
 

31-03-2015 

Open Call Deliverable OCO-DS1.1 
Network Coding in Transport Networks 
(MINERVA)  

Open Call Deliverable OCO-DS1.1 

Grant Agreement No.: 605243 

Activity: NA1 

Task Item: 10 

Nature of Deliverable: R (Report) 

Dissemination Level: PU (Public) 

Lead Partner: BME 

Document Code: GN3PLUS14-1296-40 

Authors: from BME: Dr. Péter Babarczi, Dr. János Tapolcai, Bence Ladóczki, Alija Pašić;  

from i2CAT: Carolina Fernandez, Oscar Moya Gomez, Dani Guija 

 

© GEANT Limited on behalf of the GN3plus project. 

The research leading to these results has received funding from the European Community’s Seventh Framework 

Programme (FP7 2007–2013) under Grant Agreement No. 605243 (GN3plus). 

Abstract 

The purpose of this document is to summarize the theoretical results, implementation considerations, deployment details, 

and measurement results reached in the MINERVA project. During our theoretical work we identified a special case of 

network coding which is able to maintain scalability and simplicity, and through our implementation we showed that it is a 

viable approach in transport networks. 



 
 
 

 

Table of Contents 

 

Executive Summary 1 

1 Introduction 3 

2 Theoretical results in MINERVA 7 
2.1 The MINERVA survivable routing framework 7 
2.2 Finding an optimal network code in an optimal coding subgraph 
(Resilient Flow Decomposition) 8 
2.3 Finding an optimal coding subgraph for RFD 10 
2.4 Scope of Resilient Flow Decomposition 11 

3 The MINERVA architecture for RFD 12 

4 Application Scenarios based on RFD 15 
4.1 The video streaming use case 15 
4.2 The distributed storage use case 17 

5 Conclusions 19 

References 21 

Glossary 22 
 

 



 
 
 

Table of Figures 

Figure 1: Example of routing DAG decomposition of a critical survivable routing 9 
Figure 2 Experimental setup in GÉANT 13 

 



Table of Tables 

Table 1: Summary of the publication activity of the MINERVA project 2 
Table 2: Complexity results of other optimal survivable routing finding algorithms 11 

 

 



1 

Executive Summary 

MINERVA is the beneficiary of the “High-Availability Networking” Open Call. The objectives 
of the Open Call were: 

• To explore and research high-availability methods/technologies.  

• To port one or more applications to multi-instance versions for high-availability 
demonstrators. 

As part of the MINERVA project, we proposed a single-link failure-resilient routing 
architecture (Resilient Flow Decomposition, RFD) for unicast connections in transport 
networks based on network coding. Our main goal was to maintain simplicity and scalability 
in the design of our resiliency method. As part of our theoretical work in Task 1.1, we proved 
that simple XOR coding at the source and destination nodes are sufficient to reach all 
benefits that intra-session network coding can offer for transport networks. We proposed a 
polynomial time algorithm for optimal coding graph selection, as well as simple linear time 
network code construction approaches, which replaced the previously involved coding 
schemes that are known from the literature. With these results, we satisfied the goals of the 
open call, i.e., ease of deployment, scalability and maintainability.  

Our proposed research work covered two other aspects of high-availability networking. First, 
in our monograph and research papers we have thoroughly investigated all-optical failure 
localization; which showed that fast failure localization could be a counterpart of RFD in 
application scenarios where, in the recovery time – resource efficiency trade-off, the 
resource efficiency (i.e. usage of the channel or link) is crucial. Although signalling can be 
completely eliminated from the recovery process with our proposed approaches, the time of 
a single switching matrix configuration is still required; clearly not satisfying the 
instantaneous recovery offered by RFD. Second, as RFD breaks with the traditional single-
path routing concepts, we have investigated future routing and forwarding architectures to 
support RFD-based forwarding in future networks. With all this research work, we have 
addressed most of the topics of interest of the open call, e.g., using routing protocols to 
signal instance availabilities, support for continuous replication of data, support for seamless 
and rapid handover and recovery, support for forgiving and self-repairing synchronisation 
mechanisms, etc. 



2 

In order to satisfy the second objective of the open call (i.e., applications for high-availability 
demonstrators), and based on the knowledge of RFD, we have developed and implemented 
use cases for video streaming and distributed storage. Both use cases are built on the 
resilient routing architecture offered by RFD. That is, video streams can be recovered from 
single-link failures of the transport network without any interruption, and the redundancy 
offered by simple network coding is enough to recover files in a distributed storage even in 
the presence of single link or storage node failure. Through its deployment in the GÉANT 
OpenFlow Facility (GOFF), we have shown that the RFD method can instantaneously 
recover video streams sent through an insecure protocol (e.g., UDP) from single-link failures 
without packet retransmission or flow rerouting. This means that RFD+UDP can be a viable 
approach to offer reliable services like TCP in future transport networks. 

Among the expected outputs of the Open Call, publication of the project’s results in peer-
reviewed journals was an important requirement. Besides 1 book (monograph), 4 conference 
publications to top venues, and 1 demo paper, we have summarized our research results in 
3 peer-reviewed journal papers in prestigious journals: two in IEEE/ACM Transactions on 
Networking and one in Elsevier Computer Networks. We have also submitted 1 journal 
paper about optimal network coding schemes for RFD in IEEE Transactions on 
Information Theory, which is still under review at the end of the project. The summary of 
the proposed and reached publications can be found in Table 1.  

 Proposed Accepted Submitted 

Publications of T 
1.1. 
(Nov 2013 – Apr 
2014) 

2 submitted 
conference papers 

2 journals (IEEE/ACM 
Transactions on 
Networking) 
1 book (Springer) 
3 conference papers 
(IEEE ISIT, IEEE 
DRCN, IEEE Infocom) 

1 journal paper (IEEE 
Transactions on 
Information Theory) 

Publications of T 
1.4. 
(Dec 2014 – March 
2015) 

1 accepted 
conference paper 
1 accepted journal 
paper 

1 journal paper 
(Elsevier Computer 
Networks)  
1 conference 
publication (IFIP 
Networking) 
1 demo paper (IEEE 
Infocom) 

- 

Dissemination of T 
2.2. 

- CONNECT Magazine - 

Table 1: Summary of the publication activity of the MINERVA project 



3 

1 Introduction 

A survivable routing scheme in transport networks has three utmost important features: 
recovery time, simplicity (i.e., low computational and operational complexity) and efficient 
capacity allocation. But which one is the most important for service providers, and what are 
they willing to sacrifice in order to reach it? To answer this, we have to look to what is used 
in practice. In networks, the most commonly used survivable routing scheme is the so-called 
dedicated 1+1 path protection, which sends the user data along two disjoint paths (primary 
and backup). Although it consumes twice as much capacity as the primary capacity, there 
are efficient algorithms to calculate 1+1 routing (i.e., disjoint path-pair), and it provides 
instantaneous recovery from any single edge failure. 

Although 1+1 is still the most commonly used protection scheme, there is still room for 
improvement in bandwidth utilization. On the other hand, and based on the previous 
observation, simplicity and ultra-fast recovery time seem to be the most important 
features; and efficient capacity allocation comes only after them. Several survivable routing 
schemes were introduced in the past decades. Such schemes could significantly reduce the 
bandwidth utilization, but they sacrifice the ultra-fast recovery time, the low computational 
complexity, or - most importantly - the simple operation. Following this argument we show in 
MINERVA that, through a careful design, we can keep these merits and achieve near-
optimal capacity allocation at the same time. 

In transport networks, optimal capacity efficiency can be achieved with in-network 
modification of data (called network coding) while fast recovery time is maintained. 
However, the practical implementation of complex network coding operations is still an open 
question, which makes these methods inapplicable. On the other hand, there are some 
special cases of coding that could be feasible in transport networks. For instance, diversity 
coding (DC); which splits the data at the source node into two parts A and B, and creates 
redundancy data A XOR B, too (XOR denotes the exclusive OR operation on the data), then 
sends these on three edge-disjoint paths. Diversity coding can reduce the capacity 
consumption of 1+1 (from 2 to 1.5 units), while its complexity and recovery time are the 
same. On the other hand, this method is applicable only in 3 edge-connected networks, 
which is a crucial drawback. 



4 

In the MINERVA Open Call project from November 2013 to March 2015 our goal was to 
develop a simple, scalable and easily maintainable survivable routing scheme using network 
coding that maintains the merits of DC and also improves it in several aspects. These results, 
among them the design of a reliable underlying networking infrastructure, were published in 
the publications listed below. We also provide a brief introduction of the contents of each of 
them.  

The two utmost important theoretical features required for a robust network coding scheme 
to be considered a viable approach in practice were investigated in the first two papers. The 
first feature to address is finding an optimal coding subgraph for the connection, which 
ensures that even if a failure occurs, the reserved resources are sufficient to ensure the 
connectivity and minimal data rate between the source and destination nodes. We answered 
this question in the following paper (detailed in Section 2.1): 

• Alija Pasic, János Tapolcai, Péter Babarczi, Erika R. Bérczi-Kovács, Zoltán Király, 
Lajos Rónyai, Survivable Routing Meets Diversity Coding, submitted to IFIP 
Networking, pp. 1-9, Toulouse, France, 2015. 

The other important feature of a network coding scheme is to find an optimal network code in 
an (optimal) coding subgraph. We proposed a simple and elegant proof for this issue in the 
following paper: 

• Péter Babarczi, János Tapolcai, Lajos Rónyai, and Muriel Médard, Resilient Flow 
Decomposition of Unicast Connections with Network Coding, in Proceedings of the 
IEEE International Symposium on Information Theory (ISIT), pp. 116-120, 
Honolulu, HI, USA, 2014. 

Since then, we have further investigated its scope and proposed further coding schemes 
(summarized in Section 2.2): 

• Péter Babarczi, János Tapolcai, Alija Pasic, Lajos Rónyai, Erika R. Bérczi-Kovács, 
and Muriel Médard, Linear Time Coding Algorithms for Resilient Flow Decomposition 
in Transport Networks, submitted to IEEE Transactions on Information Theory, 
2015. 

Owing to its graph theoretical properties, we named the above framework (which finds an 
optimal coding subgraph and an appropriate network code) as Resilient Flow 
Decomposition (RFD). After we identified the necessary functions to make the RFD 
scheme work in practice, we published the architecture and the initial measurement results 
measured on our proof-of-concept implementation in the GÉANT OpenFlow Facility in the 
following paper (refer to Section 3 for further details): 

• Péter Babarczi, Alija Pasic, János Tapolcai, Felicián Németh, and Bence Ladóczki, 
Instantaneous recovery of unicast connections in transport networks: Routing versus 



5 

coding, accepted to Elsevier Computer Networks (COMNET), impact factor 1.282 
(in 2013), 2015. 

Finally, we have implemented two use cases on the basis of RFD, namely video streaming 
and distributed storage. Their demonstration is to be done between April 27th and 30th, after 
the project ends in March; and will take place at the demo session of IEEE Infocom 
(described in Section 4): 

• Bence Ladóczki, Carolina Fernandez, Oscar Moya, Péter Babarczi, János Tapolcai, 
Daniel Guija, Robust Network Coding in Transport Networks, accepted to The 34rd 
Annual IEEE International Conference on Computer Communications 
(INFOCOM), pp. 1-2, Hong Kong 

Note that, the goal of RFD was to keep the instantaneous recovery property of 1+1 
protection while offering improved resource efficiency. Another viable resiliency approach is 
to keep the resource efficiency of restoration methods and improve their recovery time; that 
is, approaching the resource efficiency – recovery time trade-off from the other extreme. This 
approach is applicable in environments where the resource efficiency is more important than 
instantaneous recovery. We have investigated some related topics in the field of high-
availability networking such as fast all-optical failure localization methods for rapid recovery 
of the disrupted connection: 

• János Tapolcai, Pin-Han Ho, Péter Babarczi, and Lajos Rónyai, Internet Optical 
Infrastructure - Issues on Monitoring and Failure Restoration, pp. 1-212, Publisher: 
Springer, ISBN 978-1-4614-7737-2, 2014. 

• János Tapolcai, Pin-Han Ho, Péter Babarczi, and Lajos Rónyai, Neighborhood Failure 
Localization in All-Optical Networks via Monitoring Trails, accepted to IEEE/ACM 
Transactions on Networking (ToN), impact factor 1.986 (in 2013), 2014. 

• János Tapolcai, Lajos Rónyai, Éva Hosszu, Pin-Han Ho, Suresh Subramaniam, 
Signaling Free Localization of Node Failures in All-Optical Networks, The 33rd 
Annual IEEE International Conference on Computer Communications 
(INFOCOM), pp. 1860-1868, Toronto, ON, Canada, 2014. 

These approaches can be incorporated with pre-planned restoration methods (often termed 
as shared protection in the literature), and could provide fast recovery by eliminating both 
failure localization time and failure notification time form the standard GMPLS recovery 
process. We have shown that the additional capacity reserved by the supervisory lightpaths 
(purely used for failure localization purposes) can be completely hidden by the protection 
capacity of the restoration framework, even in lightly loaded networks. Although resource 
efficient, the time of a single switching matrix configuration is still required, thus, they could 
not provide instantaneous recovery as effectively as RFD does. 



6 

Furthermore, as RFD breaks with the traditional single-path forwarding paradigm, new 
forwarding and routing architectures are required which are able to support multipath routing, 
and enable novel forwarding and routing schemes for multicast routing and routing on 
directed acyclic graphs (DAGs) in RFD: 

• János Tapolcai, József Bíró, Péter Babarczi, András Gulyás, Zalán Heszberger, and 
Dirk Trossen, Optimal False-Positive-Free Bloom Filter Design for Scalable Multicast 
Forwarding, accepted to IEEE/ACM Transactions on Networking (ToN), impact 
factor 1.986 (in 2013), 2014. 

• Máté Nagy, János Tapolcai and Gábor Rétvári, On the Design of Resilient IP 
Overlays, In Proc. 10th International Conference on Design of Reliable 
Communication Networks (DRCN), pp. 1-8, Ghent, Belgium, 2014. 

The detailed description of these results on all-optical failure localization and Bloom filter 
based forwarding can be found in Milestone 1.1 and in the related publications. In the rest of 
this document, we shortly describe the theoretical basis of RFD (in Section 2) as our novel 
robust network coding based solution for transport networks (results of Task 1.1). After that, 
we describe the necessary network functions that are required to deploy an arbitrary coding 
subgraph in a software-defined network in Section 3 (results of Task 1.2). Section 4 
introduces the two application scenarios built on the survivable routing architecture of RFD 
(approaches in Task 1.3) and contains some measurement results and the overall lessons 
learned in MINERVA (conducted during Task 1.4). Finally, Section 5 concludes the 
deliverable. 



7 

 

2 Theoretical results in MINERVA 

In this section, we shortly summarize the main findings of the theoretical results of MINERVA, 
i.e., the idea behind the robust network coding architecture of the Resilient Flow 
Decomposition (RFD) algorithm and the main theorems and definitions. Based on these 
results, in this section we identify the main characteristics and node capabilities of an 
arbitrary RFD solution; which will be the basis of the Network Function (NF) design in 
Section 3. A more detailed description on the mathematical background of RFD can be 
found in Milestone 1.1 and in [Pasic15], [Babarczi14], [Babarczi15-TIT]. 

2.1 The MINERVA survivable routing framework 

A transport network is a collection of routers, switches (referred to as nodes) and high 
bandwidth communication links (referred to as edges) between them. It may be represented 
by a directed graph G = (V,E,k,c) with node set V and edge set E. Each  edge has two 
attributes, namely its capacity , i.e., number of bandwidth units available for data 
transmission; and its cost , which is defined as the cost of using one unit of 
bandwidth along edge e. Given a connection D=(s,t,d), with information source , 
information sink  and the number of bandwidth units d requested for data transmission. 

Definition 1. We say that R=(VR, ER, f) is a survivable routing of a connection D=(s,t,d) 
in G (where , , and , if there is an s-t flow of value 

 in R, even if we delete any single edge of R. On the other hand, a routing is 
vulnerable if it is not survivable. 

Note that, after the edge failure is identified, any routing method could be adopted to resend 
the flows on the intact edges of a survivable routing R, clearly resulting in slow recovery. 
However, several (robust) network coding theorems ensure that a sufficient amount of 
information reaches the destination after a failure occurred when there is no failure 
identification, but for the price of complex in-network operations.  



8 

In MINERVA we have demonstrated that these merits –fast recovery and simplicity– 
can be brought together in survivable routing approaches with the help of our 
network coding approach, called Resilient Flow Decomposition (RFD).   

We say that a survivable routing R is critical, if we cannot further decrease the flow value 
f(e) along any edge in  without making routing R vulnerable. A (robust) network 
coding based routing scheme (like RFD) consist of two steps: 

(i) optimal coding subgraph selection, 

(ii) optimal (robust) network code construction in the coding subgraph. 

Although the first step is the selection of a logically optimal coding graph, we start with the 
introduction of the main code construction theorem of the MINERVA framework; as this will 
give us a really efficient tool for designing optimal coding subgraphs as well. This result 
greatly simplifies the previously known code construction methods in the literature, and 
opens the way for MINERVA to be the first efficient implementation of a robust 
network coding based scheme in transport networks.  

2.2 Finding an optimal network code in an optimal coding 
subgraph (Resilient Flow Decomposition) 

In survivable routing, besides theoretically good properties such as low bandwidth utilization 
and fast recovery, both simplicity and easy deployment are essential from a practical point of 
view. Thus, complex data processing at core nodes (i.e., other than s and t) like network 
coding is not desired. All complex operations shall be moved to the edge of the network (i.e., 
nodes s and t). Luckily, for single edge failures and two data parts, the number of survivable 
routings providing this simplicity is quite wide [Babarczi15-TIT], [Babarczi14]: 

Theorem 1 (Resilient Flow Decomposition). Suppose that survivable routing R is 
critical. Then there are disjoint edge sets EA, EB, EA XOR B of R, called routing DAGs, 
such that for an arbitrary edge  after removing the corresponding edge(s) from 
ER at least two of the routing DAGs connect s to t.  

Figure 1 depicts an example of how a critical survivable routing can be decomposed into the 
three routing DAGs. 



9 

 

Figure 1: Example of routing DAG decomposition of a critical survivable routing 

Note that, in diversity coding, for a connection D=(s,t,2) the redundant data A XOR B is 
calculated at the source s. Then, A, B and A XOR B are sent along three disjoint end-to-end 
paths between s and t. The edge sets used by the disjoint paths are denoted as EA, EB, EA 

XOR B, respectively. Now, 1+1 protection scheme could be treated as an implementation of 
RFD: A and B are sent along two disjoint paths EA and EB, while the redundant data A XOR 
B is sent along both paths, i.e., EA XOR B = EA U E B. Both routings are survivable. 

It is also worth noting that, with the help of RFD, the three routing DAGs can be operated 
independently from each other, i.e., each DAG carries a specific data part regardless of a 
failure condition; while involved operations are performed only at the end nodes of 
the connection. However, the general implementation of RFD (other than diversity coding 
and 1+1) requires splitting and merging of the paths at the core nodes (e.g., nodes p and m, 
respectively in Figure 1). Let  and  denote the in-degree and the out-degree of a 
node, respectively. 

Definition 2. Node  is called splitter, if  and , i.e., it receives 
data on a single edge, while forwarding the same copy on two outgoing edges. 
Similarly, node  is called merger, if and , i.e., it receives the 
same data on two incoming edges, while forwarding one of them (or upon failure the 
intact one) on its single outgoing edge.  

We believe that splitting and merging operations are simple enough, in the sense that every 
node in the network can perform them without any complicated software update. 
Furthermore, in current networking paradigms, such as Software-Defined Networking (SDN), 
a splitter can be easily deployed by applying simple flow rules; while merger functionality can 
be implemented as a simple network function. This is further discussed in Section 3.  

The corollary of Theorem 1 is that a robust network code in our single link failure 
resilient setting –when user data is split into two parts– is equivalent to find three 
routing DAGs between s and t in the coding subgraph. Thus, we have converted a 
complex algebraic problem to a graph theoretical (more precisely flow) problem. In Milestone 
1.1 we have introduced a linear time code construction algorithm for a survivable network 
[Babarczi14], and we have shown that if we are considering critical survivable routing RD, 



10 

than a more efficient coding exists [Babarczi15-TIT]. However, note that if we are 
considering optimal coding graph selection and network code construction as a joint 
optimization problem (i.e., find minimal cost coding subgraphs in the form of three routing 
DAGs); then the RFD theorem gives us the opportunity to find the optimal coding subgraph 
together with the corresponding network code without any subsequent network code 
construction step in some special cases. Such subgraph selection algorithms and the 
complexity of the other optimization problems will be discussed in Section 2.3. 

2.3 Finding an optimal coding subgraph for RFD 

In the optimal coding subgraph selection problem, our goal is to find a survivable routing R 
for connection D with minimum bandwidth cost from the possible set of survivable routings 
RD. In Milestone 1.1 optimal capacity allocation for RFD was still stated as an open question. 
In our subsequent research, we have proved the complexity of two practically relevant 
scenarios. First, we have shown that the this problem is solvable in polynomial time, if the 
edge capacities k(e) are infinite, i.e., there are no bottleneck links in the network and all 
nodes can split or merge the flow. Note that for the demand D=(s,t,2) in RFD we are 
searching three routing DAGs, each forwarding one unit of capacity (either A, B or A XOR B. 
Thus, in a critical survivable routing one would think that infinite edge capacity means

, i.e., the case when all DAGs may use the same edge. However, and as a 
consequence of the RFD theorem, it was shown in [Babarczi14] that the flow values are 

 for a connection with d=2 and using resilient flow decomposition in a critical 
survivable routing. Thus, without loss of generality, we can restrict the available capacities to 

 for every edge e, without ruling out the minimum cost survivable routing (which is 
critical, obviously). Hence, infinite edge capacities in RFD mean  (instead of 
3). Furthermore, we assume first that each node in the topology can act as a splitter or 
merger. Based on these assumptions, in [Pasic15] we proved the following theorem: 

Theorem 2. If the network has infinite edge capacities on all edges (and each node 
can act as a splitter and/or merger), the minimum cost survivable routing R can be 
computed in O(|V||E|log1+|E|/|V| |V|) steps. 

The proof is constructive, and gives the polynomial-time algorithm to find an optimal 
survivable routing, detailed in [Pasic15]. A natural question is why the algorithm cannot 
cope with networks with some edge capacities , or when some nodes are not able to 
perform splitting or merging. The problem is that in the capacity-constrained case, the route 
of the third routing DAG depends on the first two routing DAGs; as they can reserve some 
critical resource (i.e., we cannot calculate the DAGs on the same graph as the available link 
set changes upon resource availability). The problem of the scenario with restricted node 
capabilities is that splitting and duplicating the same data flow on a single link is beneficial in 
some scenarios and obviously could not be an issue in Theorem 2, where such a solution 
would lead to sub-optimality. Thus, the computational complexity of these cases is an open 



11 

question. However, the other extreme of the polynomial time special case, i.e., when both 
capacity and node capabilities are restricted, was proved to be NP-complete in 
[Pasic15]. 

Table 2 summarizes the complexity results of the proposed optimal algorithms with different 
available node sets and  for splitting and merging, respectively  (infinite edge capacities 
mean , while capacity constrained refers to the case when there are some 
links with capacity ). 

 

 

 

 

 

  
 

 

Table 2: Complexity results of other optimal survivable routing finding algorithms 

2.4 Scope of Resilient Flow Decomposition 

The linear time coding algorithms and polynomial time subgraph selection algorithms 
presented in this section proved that the RFD approach works effectively for the case of two 
data flows and a single link failure. Two straightforward generalizations may increase the 
number of data flows or the number of possible link failures. We presented examples to 
show that none of these generalizations are possible, i.e., such flow decomposition algorithm 
may not exit for these scenarios. To be more specific, in Milestone 1.1 and in [Babarczi15-
TIT] we have shown that such simple flow decomposition is not possible neither for dual link 
failure resilience with two data parts, nor for single link failure with three or more data parts. 
Therefore, we can claim that the simplicity of RFD is only proved for the investigated special 
case. Luckily, this is more than enough, as it opens the way for an efficient 
implementation of robust network coding in transport networks. 

 Infinite capacities Capacity 
constrained 

€ 

P = {s},M = {t} Suurballe 
 

Suurballe 
 

 - - 
NP-complete 

 SRDC algorithm 
(Survivable routing 

with diversity coding) 
 

Integer Linear 
Program 

- 



12 

 

3 The MINERVA architecture for RFD 

In order to investigate the possibility of the practical deployment of Resilient Flow 
Decomposition (RFD), it was necessary to implement the modules that allow forming an 
arbitrary protection structure for the connection requests. In this section we shortly describe 
our proof-of-concept RFD implementation in a real-world transport network infrastructure, 
namely the OpenFlow Facility of the GÉANT European backbone network (GOFF). For a 
detailed description, please, refer to Milestone 1.2 and [Babarczi15-COMNET]. 

The existing implementations of network coding fall into two categories: they either put the 
coding/decoding functionality into the application layer of the end hosts, or they needed to 
substantially modify the software running in routers. Relying on a modified end host requires 
end user involvement, which limits the possible deployment scenarios. Additionally, relying 
solely on end host also reduces the number of coding possibilities. On the other hand, 
persuading equipment vendors to implement an experimental network coding function in 
their high-speed router is slow process that most probably will not succeed. Luckily, the 
Software-Defined Networking (SDN) paradigm has been gaining acceptance in recent years. 
SDN makes fast innovation possible by separating the control plane from the data plane. A 
control application (controller) can remotely “program” the packet forwarding behaviour of an 
SDN capable switch. Unfortunately, though, the currently standardized protocol for 
controller-switch communication named OpenFlow is not capable of instructing switches to 
modify packet payloads. However, the OpenFlow protocol conveniently allows steering traffic 
to middleboxes where complex packet manipulations can take place. Moreover, the advance 
in hardware technology now allows porting middlebox logic implemented on specialized 
hardware elements to normal software running on off-the-shelf hardware. In case of Network 
Function Virtualization (NFV), the network operator runs this packet processing software in a 
virtualized environment, for example, in a virtual machine. NFV allows dynamically placing 
so-called network functions next to different switches based on actual demands. Thus, we 
decided to follow the NFV approach in our network coding implementation. 



13 

    
   (a)                (b) 

Figure 2 Experimental setup in GÉANT 
The OpenFlow switches and corresponding VMs are in London, Zagreb, Vienna, Frankfurt 
and Amsterdam. (a) The single link failure resilient, robust network coding based solution of 
RFD (i.e., three end-to-end DAGs in the butterfly topology). (b) The mapping of the butterfly 

to the physical GOFF topology and the corresponding NF placement at the VMs. 

Following the SDN/NFV principles, we implemented small building blocks as network 
functions (NF) allowing the creation of complex scenarios of RFD. Our implementation 
facilitates practical deployment of RFD in high-speed networks, such as GOFF. Even if one 
NF cannot process packets at line speed, the SDN controller can divide traffic among 
multiple NFs of the same kind running on the same virtual machine connected to the 
OpenFlow switch. In the following, our NF-based prototype implementation of RFD is 
demonstrated and possible implementation issues of the required network functions for RFD 
are discussed. In order to deploy an arbitrary optimal coding subgraph consisting of routing 
DAGs in RFD, the following types of NFs are required: 

• Splitter (M0): The splitter duplicates the packets of its single incoming port and 
forwards them through two output ports. An OpenFlow switch can be programmed to 
follow this simple multicast rule, so no special NFs are needed (e.g., node v4 
duplicates the B flow in Figure 2). 

• Sequencer (M1): Our RFD implementation uses MPLS labels to mark different flows 
(see Milestone 1.2 for details). In the RFD framework, the sequencer NF divides the 
user data (e.g., video stream) into parts A and B (odd and even packets in our 
implementation), and three MPLS labels are stacked to the packet header: the first 
identifies the payload type (i.e., flow A, B or A XOR B), while the other two contains 
the sequence number, etc., of the A and B packets in the payload, respectively. The 
sequencer module is always placed to the source node, e.g., s in Figure 2. 

• Merger (M2): In Figure 2, the same traffic stream (B) arrives to node v3 through two 
different ports. The task of the merger NF is to forward one of the packets out of the 
two identical copies arriving on the two incoming ports. Without loss of generality, the 



14 

flow arriving on link (v1, v3) has lower delay, thus, in a failure-less state, the merger at 
v3 forwards this flow and drops the duplicate packets arriving on link (v2, v3). If a 
failure occurs on the path traversing (v1, v3), then v3 should forward the traffic of the 
intact path arriving on link (v2, v3) instead. Note that our goal is to maintain 
instantaneous recovery, while the detection of the failure of path on link (v1, v3) is 
never instantaneous – which results in traffic loss or increased recovery time. Thus, 
instead of detecting path failure, our merger NF implementation keeps track of the 
highest sequence number it forwarded. If a packet arrives to the merger either from 
link (v1, v3) or link (v2, v3), the merger checks whether its sequence number is higher 
than the current highest one. If a highest sequence number is found, then it forwards 
the packet and records its sequence number; otherwise dropping the packet. This 
simple forwarding logic ensures instantaneous recovery from link failures. 

• Coding/Decoding (M3): The simple XOR encoding allows fast packet processing, 
and in the network coding strategy in [Babarczi14] it is performed at the source node 
(s). From two input streams A and B, the encoder creates the A XOR B flow by XOR-
ing the whole packet, and by restoring the checksum and other fields in the header for 
successful data transmission. Thus, encoding/decoding must be implemented as an 
NF. Note that in a general network coding (e.g., General Dedicated Protection (GDP) 
[Babarczi15-COMNET]) scheme, coding might be performed at intermediate nodes as 
well. In the case of decoding at the destination (t), a buffer is also necessary in order 
to smooth the jitter caused by the end-to-end propagation delay difference between 
the different subflows. Otherwise, encoding and decoding network functions are very 
similar.  

Note that, using the above network functions, an arbitrary RFD coding subgraph can be 
deployed in the network.  



15 

 

4 Application Scenarios based on RFD 

In order to prove the usefulness and performance of RFD in transport networks we 
envisioned a pair of typical applications: video streaming and distributed storage. The 
detailed description of the use cases and measurement results can be found in Milestone 1.3 
and Milestone 1.4, respectively. The experiments are deployed on the GOFF, on top of a 5-
node full-mesh topology (see Fig 1(b)), but replicated as well in different testbeds, in order to 
both demonstrate portability and circumvent the resource limitation of the GOFF virtual 
environment for high-performance scenarios. In our use cases, an SDN controller identifies 
or adapts a resilient topology (e.g., the butterfly in Figure 2(a)) on top of the 5-node full-mesh 
in GOFF (or on the testbed described in Milestone 1.4) and routes the DAGs accordingly 
between the nodes. The NFs are located on the VMs and connected to the network devices, 
thus intercepting and operating on incoming traffic as needed for each case [Ladoczki15]. 

4.1 The video streaming use case 

In order to demonstrate the practical benefits of RFD for transport networks, we conducted 
our recovery time measurements on real equipments in a pan-European SDN-enabled 
network, the GÉANT OpenFlow Facility. The switches are placed at Amsterdam, Frankfurt, 
Vienna, London and Zagreb connected through 100 Gbps optical links. Each switch is 
connected to a server running a virtual machine (VM), on which the necessary network 
functions can be deployed. Our SDN controller is developed using POX and runs at the 
London VM. Besides setting appropriate flows in the switches to enable dynamic forwarding, 
its main objective is to map the butterfly topology in Figure 2(a) to the physical network in 
Figure 2(b). Each of the A, B and A XOR B subflows are identified by different forwarding 
identifiers and forwarded to the appropriate NFs obtained from the resilient RFD solution. For 
this purpose, we can use the custom network coding MPLS labels, or the VLAN ID tag of the 
Ethernet header for forwarding the different subflows, depending on the OpenFlow version. 
We placed the source node with the corresponding NFs to the Frankfurt VM, while the 
destination node and decoder is running at the Vienna VM. 



16 

A video flow is transmitted via UDP from the source s to the destination t through the end-to-
end DAGs in Figure 2(a). By placing appropriate NFs in the topology (see Figure 2(b)), we 
are able to ensure instantaneous recovery after a single link failure occurring anywhere in 
the network as follows. The video flow in s (Frankfurt VM) is split into parts A and B using NF 
M1. A coded variant A XOR B is also generated with M3. The three flows are then routed 
along their corresponding DAGs, i.e., A is sent to the Frankfurt switch (acting as v2), A XOR 
B is sent to v1 in London (tunneling through the Frankfurt switch) and B is sent to both nodes 
after traversing NF M0. 

It is worth noting that flow B is routed from both Frankfurt and London switches to the 
Amsterdam VM (v3), where both inputs are merged by M2 to avoid forwarding duplicated 
packets. Later on, the B flow is split again in Amsterdam VM (v4) and the DAGs are routed to 
the destination t (Vienna VM) through the Vienna switch (directly via v6 and tunneling from v5 
in Zagreb).  

In the no-failure scenario, the video is reconstructed from flows A and B by removing the 
custom MINERVA MPLS labels and restoring the corresponding checksums. If either A or B 
is broken (in RFD at most one DAG can be disrupted) the video stream can be 
instantaneously recovered by using packets from either flows A or B and matching them with 
A XOR B. Here, we present our measurement results, which were conducted on the 
experimental setup in Figure 2(b). Our results are the average of multiple runs with different 
packet sizes and different packet arrival frequencies (from ms to sec) in order to avoid false 
data. First, we have measured the performance of individual NFs in order to understand their 
performance characteristics. However, even in the most stressful scenarios, both the 
encoding and decoding delay was below the precision of the measurement (<= 1 ms). Thus, 
we can conclude that steering the traffic to the NFs at the virtual machines do not add any 
measurable delay to the path. Second, the end-to-end delay of the three end-to-end flows in 
the failure-less state was measured in the setup of Figure 2(b). Note that the A flow in the 
mapped topology traverses physical link Frankfurt-Vienna, the shortest-delay path along the 
edges of the B flow traversing physical edges Frankfurt-Amsterdam and Amsterdam-Vienna, 
while the A XOR B flow is forwarded through links Frankfurt-London, London-Zagreb and 
Zagreb-Vienna. The end-to-end delay of the A, B and A XOR B flows are 41.6 ms, 48 ms 
and 69.4 ms, respectively. 

As the main goal of the RFD framework is to provide instantaneous recovery, we have 
investigated whether the goal of recovery time (tR) < 20-30 ms can be achieved in a real 
transport network [Babarczi15-COMNET]. From theory, the recovery time should be about 
the maximum of the pair-wise delay difference of the end-to-end paths of the original flows 
(A and B) and the encoded flow A XOR B, as after a flow disrupts it can be reconstructed 
from the packets of the other two. This difference is tR = 27.8 ms on average, based on the 
previous results. This theoretical delay was completely backed by our measurement results. 
We have simulated the failure of the (v3, v4) virtual link forwarding the B flow at the 
Amsterdam VM, and measured the recovery time at the destination node (Vienna VM), i.e., 
the time difference between the last packet received from the original B flow, and the 



17 

appearance of the first decoded B packet from the A and A XOR B flows. This delay was tR = 
23 ms on average. 

4.2 The distributed storage use case 

RFD can also provide efficient solutions for bidirectional transmissions between a client and 
multiple servers, where the data is first divided into A, B and A XOR B and then stored in or 
recovered from different physical locations (the storage nodes). Similarly to the video 
streaming use case, RFD is applied to instantaneously recover data – even if one of the 
storages is unavailable or a link failure occurred during upload or download operation. 
Furthermore, and because of the distributed nature of this use case, it is possible to benefit 
from increased security when the three storages belong to different clouds as well (e.g., 
Google Drive, Dropbox, etc.), thus distributing and minimizing the risk of a potential breach 
of the user's stored data. 

In this scenario, a user attempts to either write (upload) or read (download) some contents 
through a client, for instance a laptop. The client, on the other hand, interfaces with a data 
center consisting of a number of servers. Each server stores a specific portion of the user's 
data. When the user requests to upload some information, the client applies first a number of 
specific NFs to split and encode the data, according to the RFD architecture. Once the data 
is ready to be transmitted, the operation requested by the user takes place. 

The SDN controller keeps track of the network status by analyzing the management traffic 
traversing the network –while collecting any useful information– and performs any operation 
related to network management. Specifically, the controller identifies first any server that 
joins the network (by analyzing the registration messages issued by any server upon booting 
up); to later add it to the server’s pool, which is used to pick a number of available servers, 
as needed for each operation. The controller also keeps a pool of the current clients. 
Besides keeping these two pools up to date, the controller also detects the kind of user 
request (write/read, or upload/download) and collects any needed information for proper 
functioning. 

When a user requests to upload a file (i.e. a write operation), the controller identifies from the 
server’s pool those three that suit better the user request. After that, the SDN controller 
registers the relation between the file, server and chunk identifiers in order to be able to 
correctly locate the file once the user requests to download it. Prior to transmitting the file, 
the controller algorithm identifies three resilient paths (corresponding to the different DAGs) 
between the client and the servers. By setting the paths in compliance with the RFD 
architecture, we ensure the correct recovery of any transmission after a single-link failure. 
On the other hand, when the user issues a download request (i.e. a read operation), the 
controller finds the appropriate servers containing the chunks that correspond to the file 
identifier, by using the relation registered during the previous upload step. After this, the 



18 

controller redirects the different contents (i.e. data chunks) from the servers to the requesting 
client, where these are put back together in a similar fashion to the previous use case. 
 
In the event of a failure in a single link (i.e. one flow is missing), the client will assemble the 
full contents from the received two chunks. When there is a failure condition in one of the 
storage nodes, the client will behave similarly. In both cases, the recovery operation of the 
specific file is almost immediate once both are received in the client, as there are no extra 
retransmissions. 



19 

 

5 Conclusions 

In protection and restoration approaches without instantaneous recovery packet, 
retransmission and maybe flow rerouting would be necessary upon a network failure. This, 
however, causes severe packet loss and transport service outage; as both failure localization 
and failure notification times are not negligible, and the recovery time would also contain the 
end-to-end path delay when the flow is rerouted. 

We have measured the recovery of a single working path in the GOFF after a failure disrupts 
the connection, and even in the best scenario it was in the order of seconds. On the other 
hand, in MINERVA we have shown that even if a failure occurs, our RFD approach can 
recover the source flow instantaneously, without packet retransmission or flow rerouting. The 
recovery time only depends on the delay characteristics of the underlying topology. Thus, we 
have demonstrated that reducing recovery time by adding redundancy to the connection is a 
viable approach in transport networks. 

We conclude that we have satisfied all requirements of the High-Availability 
Networking Open Call we have undertaken in the proposal. Nevertheless, and based on 
the lessons learned from our work in the theoretical and implementation aspects, we see the 
following continuation possibilities of resilient approaches similar to MINERVA: 

• High-performance networking: Make the RFD implementation able to handle really 
stressed scenarios, such as the HD video streaming investigated in Milestone 1.4 or 
big-sized data being reliably transmitted and stored among a number of nodes. 

• Multipath routing: We have shown that multipath forwarding is a key enabler of RFD, 
and we claim that it is the basis of any future high-availability networking scheme as 
well. An SDN implementation of the routing on the “shortest pair of disjoint paths”, or 
the well-known independent tree approach would be the following steps towards a 
scalable and low-latency multipath routing architecture; addressed to sensitive 
environments, for instance clouds or 5G networks. Internet-wide multipath routing and 
multipath TCP are also interesting directions in this research. 



20 

• Failure/delay monitoring: In the MINERVA research work we have investigated all-
optical failure localization, as a possible counterpart for RFD in a less time-sensitive 
application environment (that is, a trade-off between recovery time and resource 
efficiency). We have the necessary theoretical understanding of this approach (see 
our book published as part of MINERVA); however, we have not had any opportunity 
to understand its practical limitation through a real world deployment. If we can prove 
the existence of a common algebraic framework of all-optical monitoring and link-
delay measurements, our all-optical results can be useful for link-delay monitoring in 
SDNs as well. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 



21 

 

References 

[Pasic15] Pasic Alija, János Tapolcai, Péter Babarczi, Erika R. Bérczi-Kovács, Zoltán Király, Lajos 
Rónyai, Survivable Routing Meets Diversity Coding, submitted to IFIP Networking, pp. 1-9, 
Toulouse, France, 2015.  

 
 [Babarczi14] P. Babarczi, J. Tapolcai, L. Ronyai, , M. Medard, Resilient flow decomposition  of unicast 

connections with network coding, in: Proc. IEEE International Symposium on Information 
Theory (ISIT), pp. 116–120, 2014. 

 
[Babarczi15-COMNET] Péter Babarczi, Alija Pasic, János Tapolcai, F. Németh, and B. Ladóczki, Instantaneous 

recovery of unicast connections in transport networks: Routing versus coding, accepted to 
Elsevier Computer Networks (COMNET), impact factor 1.282 (in 2013), 2015. 

 
[Babarczi15-TIT] Péter Babarczi, János Tapolcai, Alija Pasic, Lajos Rónyai, Erika R. Bérczi-Kovács, and Muriel 

Médard, Linear Time Coding Algorithms for Resilient Flow Decomposition in Transport 
Networks, submitted to IEEE Transactions on Information Theory, 2015. 

 
[Ladoczki15] Bence Ladóczki, Carolina Fernandez, Oscar Moya, Péter Babarczi, János Tapolcai, Daniel 

Guija, Robust Network Coding in Transport Networks, accepted to The 34rd Annual IEEE 
International Conference on Computer Communications (INFOCOM), pp. 1-2, Hong Kong, 
2015. 

 
 
 



22 

 

Glossary 

DAG Direct Acyclic Graph 
GDP General Dedicated Protection 
GOFF GÉANT OpenFlow Facility 
MPLS Multiprotocol Label Switching 
NFV Network Function Virtualization 
OF OpenFlow 
RFD Resilient Flow Decomposition 
SDN Software-Defined Networking 
SRDC Survivable Routing with Diversity Coding 
VLAN Virtual Local Area Network 
VM Virtual Machine 

 

 




