
17-03-2015

Open Call Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)

Open Call Deliverable OCQ-DS3.1

Grant Agreement No.: 605243

Activity: NA1

Task Item: 10

Nature of Deliverable: R (Report)

Dissemination Level: PU (Public)

Lead Partner:

Document Code:

Authors:

University of Amsterdam

GN3PLUS14-1297-30

Miroslav Živković, Paola Grosso

© GEANT Limited on behalf of the GN3plus project.

The research leading to these results has received funding from the European Community’s Seventh Framework

Programme (FP7 2007–2013) under Grant Agreement No. 605243 (GN3plus).

Abstract

This document is the final deliverable of the GN3plus MOTE project. It discusses the issues and possible solutions of the

topology exchange between multi-domain OpenFlow and Network Service Interface domains. It presents the topology

exchange architecture, the topology representation within the OpenFlow domains and extensions within OpenFlow

domains that support these.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30 i

Table of Contents

Executive Summary 1

1 Introduction 3

2 Topology Exchange Architecture 5

2.1 Topology Exchange Architecture Requirements 6

2.2 The Architecture 7

2.3 Topology index 7

2.3.1 Populating the Topology Index 8

2.3.2 Security concerns 9

2.3.3 Synchronization and fail over 11

2.4 Topology Provider 11

2.5 Topology Consumer 11

2.5.1 Update notifications 12

2.5.2 Authentication 12

2.6 Interaction between the main architecture components 12

2.6.1 Topology update and retrieval 13

2.6.2 Key distribution 14

2.6.3 Validation of topologies 16

2.7 Architecture components - Interfaces 17

2.7.1 Topology Index – interface design 17

2.7.2 Topology Provider – interface design 17

2.7.3 Topology consumer – interface design 18

2.8 Evaluation of the proposed Topology Exchange Architecture using the

requirements specified by the OGF NSI working group (NSI-WG) 18

2.9 Topology Exchange Architecture – Conclusions and Recommendations 22

3 Experiments 23

3.1 MOTE Testbed 23

3.2 Topology Discovery at OpenFlow domains 25

3.2.1 Relevant modules within Floodlight Controller 26

3.3 Topology Discovery at OpenFlow domains – Experiments 28

3.3.1 Experimental setup 1 28

3.3.2 Experimental setup 2 29

3.3.3 Recommendations and Conclusions 30

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30 ii

3.4 Topology Exchange Architecture experiments 31

3.4.1 Implementation Details 31

4 NML representation of the OpeFlow domain 33

5 Extensions to the Floodlight Controller 34

5.1 Topology Provider 34

5.2 Path finding (topology client) 35

5.3 Experiments 36

6 Conclusions 38

Appendix A Experimental results 39

A.1 Topology discovery experiment 1 39

A.2 Topology discovery experiment 2 41

References 43

Glossary 45

Table of Figures

Figure 2-1: Illustrative network example. 9

Figure 2-2: Retrieving keys using DNS 10

Figure 2-3: An illustration of topology update. 13

Figure 2-4: Topology retrieval 14

Figure 2-5: Key distribution at bootstrap phase 15

Figure 2-6: Key distribution during operational phase 16

Figure 3-1: MOTE testbed example deployment at UvA. 24

Figure 3-2: Complete MOTE testbed at UvA 25

Figure 3-3: Floodlight Modular Architecture 27

Figure 3-4: Topology discovery setup one 28

Figure 3-5 Topology discovery setup two 29

Figure 3-6: Automated GOLE testbed. 31

Figure 3-7: Topology exchange implementation 32

Figure 5-1: Topology exchange between two OF domains. 37

Figure 5-2: Topology exchange between OF domain and Automated GOLE. 37

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30 iii

Table of Tables

Table 2-1: Topology index entry (data model) 8

Table 2-2: Content of Topology Index for illustrative network example. 9

Table 2-3 NSI: Mandatory requirements 19

Table 2-4 NSI: Highly desirable requirements 21

Table 2-5 NSI: Not yet formalized requirements 22

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

1

Executive Summary

One of the most promising Software-defined Networking (SDN) technologies currently is based on

OpenFlow protocol and the adoption of multi-domain solutions is one of the main challenges. The

OpenFlow-based networking solutions do not properly support multi-domain scenarios. On the other

hand, an upcoming solution for automated inter-domain network services is the Open Grid Forum

(OGF) Network Service Interface (NSI). This standardized interface allows communication between

different networks bandwidth-on-demand or circuit reservation systems.

To allow the Network Services Interface to support OpenFlow or other SDN technologies, there must

be a method for describing and exchanging topologies of these kinds of networks. This will allow the

NSI to become aware of these networks, and to allow reservations on it. Besides, the network

topologies are not static, as networks are constantly upgraded and maintained, which results in ever

changing topologies. This requires from the topology exchange solutions to automatically propagate

topology changes between different domains.

Within the project MOTE we have addressed a number of challenges and issues. The NSI lacks proper

topology exchange architecture, and we first addressed this. Besides the fact that the proposed

topology exchange architecture is generic and could be used in any networked environment to

exchange documents, it fulfils many requirements for the successful implementation within NSI. From

the perspective of MOTE project, it supports push/pull topology update mechanism, which is one of

the basic principles for the automated topology exchange solution.

Next we addressed the challenge of the adequate topology description within the OpenFlow domains.

The OpenFlow domains are governed by the controllers, which are logically centralized control plane

elements within the network domain. There are many different implementations of the OpenFlow

controllers, with many different approaches and solutions for the topology representation. For the

implementation purposes we selected a particular controller implementation (Floodlight), and

investigated how to implement architecture components within Floodlight that allow us to integrate

the OpenFlow domains into the proposed architecture. We also addressed controller extensions in

order to create the topology documents within the domain and how to update these documents

automatically, i.e. upon changes in network topology.

As we investigated different OpenFlow controllers and the topology representations by these, it

became clear that we need a unified way to present the OpenFlow domains’ topologies. The OGF

Network Markup Language (NML) schema is a standard for describing multi-layer multi-technology

computer networks. At the time of its inception OpenFlow did not exist, yet the NML standard has

attempted to define a generic way of describing computer networks in a technology independent way.

Executive Summary

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

2

As the documents exchanged within NSI are using NML standard format, it goes without saying that

the OpenFlow domains should export their topologies in this format. The conclusion was that NML is

suitable to model OpenFlow topologies. Therefore, we implemented functionality that allows the

conversion of the topology instance within Floodlight controller to the NML format.

The proof-of-concept implementation verified the main architecture concepts and how to create

automated topology updates within the OpenFlow domains. We implemented a path computation

application that uses OpenFlow controller, which is a pre-requisite in order to allow end-to-end

network resource reservations. The main issues and challenges we encountered were the topology

discovery mechanisms within OpenFlow, as these cannot resolve inter-domain loops. We supplied a

solution that could be improved in the following research. The biggest issue that needs to be

addressed in the future is how to address the issue of a plethora of different OpenFlow

implementations.

This project resulted also resulted in a publication of the short article within CONNECT magazine, as

well as submission of an article to the 10th edition of the IEEE TRIDENTCOM conference. A successful

demo of the basic implementation of the topology exchange architecture was presented at the 2014

SuperComputing conference. Besides, topology exchange architecture demo and pitch talk are

confirmed for the GEC22 and US Ignite Demo Night during the coming GENI22 conference. The

topology exchange architecture is proposed to the OGF standardization body, NSI Working Group

(WG).

This document is the final deliverable of the Multi-domain OpenFlow Topology Exchange (MOTE)

GN3plus project.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

3

1 Introduction

The services and capabilities offered by the large--scale multi--domain networked environment implies

that management of these networks is essential. The (controlling) network elements need to have

sufficient information to take management decisions in an optimal and cooperative way. This

information therefore needs to be exchanged between different domains in an efficient and secure way.

One of the most promising SDN technologies currently is based on OpenFlow protocol and the adoption

of multi-domain solutions is one of the main challenges. The OpenFlow-based networking solutions do

not properly support multi-domain scenarios, although there are some solutions such as FlowVisor

[FlowVisor] that can partition multiple OpenFlow-enabled switches over several users. However, this

solution is applicable to switches that belong to a single domain only.

On the other hand, an upcoming solution for automated inter-domain network services is the Open Grid

Forum [OGF] Network Service Interface (NSI). This standardized interface allows communication

between different networks bandwidth-on-demand or circuit reservation systems. Several supporting

services are also defined in NSI, e.g. a Discovery Service. The NSI Framework [NSI-FW] provides a

way to do automated inter-domain bandwidth reservations. These inter-domain network services are

mainly implemented on VLANs. However, the NSI Framework is initially derived without support for

OpenFlow.

In Section 2 we addressed the topology exchange architecture within NSI. Besides the fact that the

proposed topology exchange architecture is generic and could be used in any networked environment

to exchange documents, it fulfils many requirements for the successful implementation within NSI.

From the perspective of MOTE project, it supports push/pull topology update mechanism, which is

one of the basic principles for the automated topology exchange solution. This means that

notifications about any relevant domain topology updates would be propagated. The main

requirement for the OpenFlow domains is therefore to implement both Topology Client and Topology

Provider architecture components.

In Section 3 we described different experiments performed with topology software. We first described

the MOTE OpenFlow testbed. Then we briefly introduced the main topology discovery and topology

representation at OpenFlow controllers, and explain why the Floodlight is the controller of our choice

for the implementation. In order to understand the topology discovery and representation within the

Floodlight we conducted the topology discovery experiments using MOTE testbed and how this

information is presented at OpenFlow controllers. It helped us to clearly identify the issues with LLDP

topology discovery and we described how to address some of them.

Introduction

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

4

As the documents exchanged within NSI are using NML standard format, it seems natural that the

OpenFlow controllers should export their domains’ topologies using NML format. In Section 4 we

summarized the investigation of applicability of the NML to model OpenFlow domain topologies.

Finally, in Section 5 we describe the implementation of the extensions of the Floodlight controller in

order to facilitate topology exchange between NSI and OpenFlow domains. We briefly describe the

implemented architecture components and controller extensions that facilitate automated

conversion of the Floodlight topology instances to/from NML format. We also describe a basic

implementation of a path finding for a Floodlight controller, which is implemented as topology client.

Our architecture has provided to facilitate easy and rapid integration of different topology clients and

flawlessly supports exchange of topologies specified in NML (or other agreed upon) format. The NML

also proved to be suitable for standardizing topology instances maintained by versatile OpenFlow

controllers.

However, automated topology discovery within OpenFlow domains requires points of attention. First,

topology discovery within OpenFlow domains is based on LLDP. In order to use this protocol to discover

links to other (non-OF) domains LLDP has to be enabled by switches at these domains.

Second, to easily identify the neighbouring domains, an extension of the LLDP port description may

be necessary. This LLDP modification has to be supported by the controller, and the switches that are

deployed in other domains.

The main issue encountered with topology discovery is the one with the loops, i.e. the situation when
two ports that belong to the same OF domain are presented as connected through an external link.
The proposed solution would work for Floodlight controllers exclusively. This requires attention for
other controllers available.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

5

2 Topology Exchange Architecture

In this section we present our Topology Exchange Architecture. The presented architecture addresses

the lack of similar approaches within the NSI community. Although a Topology Service has been

specified within the NSI, it was not a mature solution that would be able to address the very versatile

requirements brought forward within the NSI community. Besides, it lacked capabilities to support

automatic exchange of network topology updates between different domains. The procedure that has

been deployed within the NSI community so far has been to upload topology descriptions to the

centralized repository “server”. The topology retrieval was based on usage of this known location from

which the topologies could be obtained. This has been done, in general, lacking basic security

functionality (e.g. authentication), and the solution proposed supported only a pull method. The

parties that would like to obtain updates could do this only by (periodically) pulling the topologies

from the given repository. The topologies stored at the repository were specified using the OGF NML

standard [NML] that is accepted by the NSI community.

One of the goals of the MOTE project was to allow for automatic creation of the topology documents

within the OpenFlow domains. The second goal was to examine the distribution and exchange of

topology information in inter-domain scenarios including OpenFlow networks. Clearly, the automatic

generation of the topology documents within the OpenFlow domains would be of no use if these

documents could not be distributed across other NSI domains.

Therefore, in order to achieve the goals of the MOTE project we first addressed the Topology Exchange

Architecture that would extend currently deployed NSI solutions, and would make the topology

exchange feasible. In this section we present the complete architecture, including e.g. security

considerations. This gives a better impression of the solution that has been proposed for

standardization within OGF.

We will first describe briefly the architecture requirements we addressed with our proposal. After that,

the architecture, and its principal components will be introduced, as well as the interaction between

these components. Next, we present the minimal functionality (interfaces) these components should

support. We also show how our solution addresses the topology exchange requirements recently

introduced by the NSI group, which represent a foundation for the evaluation of the topology

exchange proposals within it. Finally, we explain which components should be implemented by the

OpenFlow domains.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

6

This section is based on the following publications/submissions to the standards groups, journals and

conferences:

 Architecture proposal to the OGF NSI-WG Standards group [TOPO-PROPOSAL]. Currently, it is

one of the three topology exchange proposals, of which one (or combination of these) will be

accepted as the NSI standard.

 The paper [CONNECT-paper] which has been accepted for publication at the next edition of

the Connect Journal.

 Paper [TRIDENTCOM-paper] which has been submitted to the TRIDENTCOM conference.

2.1 Topology Exchange Architecture Requirements

In order to provide the end-to-end connectivity within a multi-domain environment, one needs to

calculate the (optimal) end-to-end path. This is typically performed by path-finding applications, which,

on the other hand, may need to get how the topology of the individual networks look like and how

these networks are interconnected. This means that the path computation element needs to obtain,

in a secure and trustworthy way, the topologies of the domains.

The information exchanged cannot be tampered with, and it includes the mutual authentication

between the involved parties. Further, the topology description should be unified, and it relies upon

the underlying information model. The authors of [NW-MODELLING] present a state-of-the-art of the

network topology information models.

We summarize the architecture requirements for topology exchange as the following:

1. Every administrative domain controls and shares its own topology information

2. Domains provide topology representations based on:

a. the requesting party

b. any existing bilateral agreements between neighbours

c. other policy information

3. The system supports multiple topology information disclosure levels

4. Topology information is exchanged in a secure way between domains

5. All domains share information using the same data model

Based on these requirements, we now present the main components of the architecture.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

7

2.2 The Architecture

As sharing of the topology information provides more flexibility than sharing of reachability

information, we propose a hybrid approach to exchange topologies: the topology information is

stored in a decentralized manner augmented by a centralized index to quickly point to where the

topology information is stored. Because topologies are provided by

As sharing of the topology information provides more flexibility than sharing of reachability

information, we propose a hybrid approach to exchange topologies: the topology information is

stored in a decentralized manner augmented by a centralized index to quickly point to where the

topology information is stored. Because topologies are provided by the domains themselves it is up

to a particular domain what topology information it discloses.

Our architecture distinguishes the three main topology exchange components

Topology Index (TI) is a database that holds pointers to the topology providers and relevant domain

information. Topology index is discussed in detail in subsection 2.3

Topology Provider (TP) hosts the topology descriptions, as detailed in subsection 2.4

Topology Consumer (TC) is the component that typically uses topologies. A plethora of topology

consumers may exist and some examples of topology consumers are

 Path finding component

 Monitoring component

 Topology validation component

 Lookup component

Topology consumers are further described in subsection 2.5

A single domain may run these components or share them with other domain(s). All components take

security into account; by default all communication is signed and encrypted. Our system supports

Public Key Infrastructure (PKI) as a way to share public keys.

In the following subsections we elaborate on the main components of our architecture and their

interaction is discussed in subsection 2.6.

2.3 Topology index

Topology index is a (logically) centralized index that holds the time stamped pointers to the topology

description files in the various domains. Domains are the only holders of (complete) topology

information. The topologies are therefore not stored and maintained by the central index. There is a

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

8

single entry per domain (i.e. topology provider) as shown at Table 2-1. This also represents a data

model of the topology entry within the TI, which is used for the implementation of the components.

Table 2-1: Topology index entry (data model)

The various entry fields for a domain D have the following meaning:

 Domain is the domain name of the topology provider.

 Version of the topology file or a time stamp.

 Public key of the domain originating the information. The public key plays an essential role in

our infrastructure as it allows the verification of digital signatures and encryption of the

messages so these can be only decrypted by the intended recipient(s).

 Topology location is a pointer (usually an URL) to the location of the topology file. The URL

of the file has to be reachable by the topology index before the respective entry is added to

the list or updated.

 Neighbours represent a list of domains that are directly connected to domain D. In other

words, the domain D has peering relationships with the neighbours.

 Foreign domains represent a list of domains without their respective entries in the index but

with data plane connections to a domain D. In other words, this is a list of domains external

to the presented system. We can use foreign domains to indicate connectivity to domains that

use different systems for exchanging topologies. In addition to this, a topology provider can

share a link to (partial) topology information of the foreign domain.

 Signature contains the digital signature of the stored information. As well-known, the

signature is created using the private key of the domain.

2.3.1 Populating the Topology Index

Figure 2-1 shows an example network for which the content stored at the topology is given in Table

2-2. In this example we excluded the key and signature fields. Domains D1, D2 and D3 are topology

providers registered in the topology index and therefore only these domains can be shown in the

neighbour list. The other domains D4 and D5 do not run a topology provider registered to this topology

index but are connected to D1, D2 and D3. Therefore they are listed in the foreign domains list,

respectively.

To create the foreign domain list, the topology provider sends a notification to the topology index that

the topology is updated, and augments it with all domains it connects to on the data plane. The

Domain Version Public key Topology location Neighbours Foreign
domains

Signature

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

9

topology index receives this full list, and compares it with the domains known to the system. The

domains that are known will be listed in the neighbour's field and all the others end up in the foreign

domains field. If a new domain registers at the topology index, it checks all foreign domains fields and

will move them to the “neighbours” field when applicable.

Remark: A foreign domain may be represented as a tuple containing the domain name and the URL

for additional topology information, e.g., ["d4.net","http://d4.net/topo/"]. The additional topology

information is optional.

Figure 2-1: Illustrative network example.

Table 2-2: Content of Topology Index for illustrative network example.

2.3.2 Security concerns

The topology index is considered a trusted third party. In this way it can also be used to share public

keys amongst domains. These keys can be used by the topology consumer to verify the signed

information it retrieves from topology providers or to encrypt the data that is being sent from the

provider to the consumer.

The public keys can be exchanged out-of-band, e.g. by email. As no secret information is shared, this

can be done via an unsecured connection. Naturally, there is a possibility of impersonating the index

or provider when no PKI infrastructure is in place. When a domain hosts both a topology consumer

Domain Version Topology Location Neighbours Foreign domains

D1 Version 1 https://d1.org/topo/ D2 D4

D2 Version 2 https://d2.org/topo/ D1 D4 D5

D3 Timestamp
12569537329

https://d3.org/topo/ D5

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

10

and a topology provider it will use the same private/public key for both components; this allows a

topology provider to look up the key of a consumer and we do not have to maintain a second registry.

Updates or insertion of data in the table need to be signed by the originating domain with its own

private key. The topology index will update the table content related to the originating domain only

when the digital signature is verified by the public key of this domain.

Topology index lists the signature over the data so consumers can verify this. This will prevent

malicious domains to tamper with information of other domains. To prevent false index information

updates the topology index must verify who pushes the index updates. This can be done in two ways:

 The topology index maintainer first verifies and obtains both the domain name and public key

via an out-of-band channel and adds both of these to the system. Any updates can now be

verified by simply checking a signature.

 The public key can be distributed using for example the Domain Name System (DNS), as

illustrated in Figure 2-2. The A or AAAA record of the server can be augmented by a CERT

record containing the public key. This trust is not ultimate unless the domain uses DNSSec

[RFC-4641] to sign their zone files. The advantage of this method is there’s no manual

intervention needed to add a domain to the system and you can verify the domain keys

without using the topology index as a trusted party. Also the domain name used here must

match the domain name used in the DNS system.

Figure 2-2: Retrieving keys using DNS

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

11

2.3.3 Synchronization and fail over

The topology index is a single point of failure. When the topology index becomes unreachable, the

topology consumer can still retrieve them based on cached information. This is an unwanted situation.

One approach to this problem is to replicate the index. A particular topology index can be a consumer

of another topology index. This allows topology index A to receive updates whenever topology index

B changes and merge this information when the version is newer. In case of a conflict, index A might

have to ask the conflicting topology providers to re-send their summary information. Then topology

index A sends out update notifications and topology consumers including topology index B can update

their information. Topology consumers of course need to be aware of this backup server and know its

public keys.

2.4 Topology Provider

The topology provider is the service that provides a topology for a specific network or domain.

Topology provider shares a topology file to topology consumers and sends information to the topology

index in case of an update. When necessary more advanced functionality can be implemented, like

different topologies based on the consumer or decisions on via what domain the consumer comes

from.

A topology file contains the topology information relevant for a given domain. The format can be

arbitrary as long as it can be interpreted by the consumer. The domain decides which information it

shares. The most common use will be sharing inter-domain topologies, this is a summarized version

of the full topology which only contains the service endpoints and connections between domains

though there is no restriction on sharing the full topology. A topology provider has to share a topology

file by default this is what is supplied to any topology consumer making a request this is the default

topology file.

Based on the requesting topology consumer the topology provider can supply different topology files.

Therefore, different topologies of the same network may be presented to different parties. This may

be used to reflect the respective policy information and to remove links that cannot be used by the

consumer. If the topology consumer knows roughly what path it wants to take or knows the

neighbouring domain it wants to traverse through the consumer can supply this information in the

request. Based on this more filtering of topology information can be done.

This filtering is not intended to enforce policy or restriction, yet reflecting the policies in the topology

file will aid the path finder skipping links that cannot be used later on, making the overall process more

efficient.

2.5 Topology Consumer

The topology consumer is the component that performs an operation on the topology information.

Depending on whether the topology index is open, first the consumer needs to exchange public keys

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

12

with the topology index. Only then the consumer can consult the topology index. The consumer looks

for the domains it is interested in, processes the summary information when necessary and then

requests the topology files from the topology providers.

2.5.1 Update notifications

A consumer can subscribe to the topology index in order to obtain the topology updates of other

domains. Topology consumer can register to obtain the topology updates of certain subset of domains

only. When a topology provider publishes a new or updated topology to the index, a broadcast

message is sent to all subscribed consumers with the information that the new topology has been

added or updated. This message is optionally signed by the topology index.

The consumers could then determine whether they want to update potentially cached information by

retrieving new information from the topology index. For example adding a new domain to their list of

domains, or updating existing topology information for known a domain.

In order to receive update notifications the consumer should provide a callback address to which those

notifications should be sent. These services can be different implementations ran by different domains.

The only prerequisite is that there is a trust relation between the consumer and the topology index.

2.5.2 Authentication

It is not necessary for the consumer to have a private and public key pair to retrieve topology

information. It can verify the topology information with the public key of the provider and use the

public key to securely send a symmetric session key to the provider so secure communication can take

place. However, if some topology providers want to customize topologies based on the requesting

domain the consumer should still be able to authenticate this with the private key of the requesting

domain.

2.6 Interaction between the main architecture

components

In this section we describe the basic interaction between the main architecture components. We

assume that each participating domain has a single topology provider. The basic system operation can

be summarized as the following:

When the provider detects an updated topology it sends a notification to the topology index, which

checks the version updates the data of the respective domain (neighbours, foreign domains) when

newer. The index then sends a notification to the subscribed consumers so they can contact the

providers to update their topologies. Both subscribed and non-subscribed consumers poll the index

regularly to avoid possible inconsistencies.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

13

Besides, in order to exchange topology information in a secure way the following prerequisites have

to be met:

 Topology index needs to be known and accessible by all consumers and topology providers.

 Topology providers have to be accessible by the topology index.

 Topology index and each topology provider need a respective private/public key pair.

 Topology providers always present their respective public keys to the topology index.

 Topology consumers may (optionally) possess a private/public key pair.

2.6.1 Topology update and retrieval

Figure 2-3 shows that when an update is made to the topology the provider notifies the index and

provides some summary information (number 1 at the Figure). The Topology index will in turn notify

all registered consumers that there is an updated index (number 2).

Figure 2-3: An illustration of topology update.

In Figure 2-4 the topology consumer contacts the central index and looks for updates from the

topology providers it is interested in and gets their public key (1). The topology consumer contacts all

the providers it is interested in and retrieves the topology files (2).

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

14

Figure 2-4: Topology retrieval

An example of a topology consumer is the path finder: First the path finder fetches all the information

from the central index. This information includes pointers to topology files and summary information.

The path finder creates a network graph topology, and it can prune the domains it cannot use to find

the solution. Then path finder requests the topology for the relevant domains and uses the retrieved

topologies to create a more detailed network graph. Finally the path finder prunes out mismatches

and unusable links such that they will not be considered during the routing process and the path finder

tries to find the most suitable paths and returns the optimal one.

2.6.2 Key distribution

Figure 2-5 shows the key distribution during the bootstrap phase:

 The topology providers in D2 and D3 send their domain's public key to the index and the index

verifies the providers.

 The topology index sends its public key to consumers in D1 and D2, the consumers may verify

the index.

 The topology consumer optionally sends its domain key to the index. In case of D2 this is

already done since it also runs a provider. In this way a consumer doesn't have to be known

by the index to request information.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

15

Figure 2-5: Key distribution at bootstrap phase

If a topology provider or a topology consumer cannot reach the topology URL of a particular domain,

it can request from the topology index to retrieve it on its behalf. In such a scenario, a topology index

acts as a proxy. After bootstrap phase, there is a trust at the Topology Index. This can be further used

for key exchange during the operational phase, as illustrated in Figure 2-6. The key exchange

comprises the following two steps:

 Step 1: Topology consumer requests the public keys of the provider domains from the index.

After this step the consumer contacts the providers directly.

 Step 2: Topology providers may request the consumer's key from the index if they want to

authenticate.

Topology providers may try multiple times to update the index when the first attempt fails. Topology

index follows a more strict approach on sending its updates. For each of the updates at topology index

there is a maximum number of re-attempts. When all attempts to update the topology index fail, it

continues with the update of the next subscribed topology client.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

16

Figure 2-6: Key distribution during operational phase

2.6.3 Validation of topologies

Authenticity of information: The topology document of a domain is stored by the domain itself and it

can be validated by other domains in order to identify tampering with the topology document. In other

to ensure the authenticity of the information the following steps are taken:

 All topologies are digitally signed by private keys of the providing domain.

 The domain sending the topology will encrypt the topology using a shared secret that the

requester shares with the sending domain. The shared secret is communicated to the sending

domain by encrypting this with its public key which was retrieved from the topology index.

 Optionally the sending domain can sign the request. In this way the sending domain can be

authenticated by the provider.

Correctness of format: Both the topology provider and topology consumer can validate the

correctness of the topology information. When the topology information of a domain is not formatted

correctly, the topology consumer (e.g. path finder) should treat this particular domain as non-existent

and cannot consider the domain for path-related calculations.

Correctness of information: Only the topology provider knows whether supplied domain information

is correct, and it is a sole responsibility of a topology provider to verify topology information before

publishing it. Mistakes can be made and this can become an issue when a mismatch of information

regarding a connection between domains occurs. In the majority of cases this needs to be solved by

human intervention of the domains network engineers.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

17

Path finders should be resilient to these mismatches and not provide them as an option to the user.

This means mismatches in topology information go unnoticed to the user unless you specifically make

a request to use such a link.

A way to mitigate this is to provide a separate service that contacts the topology index to request the

topologies of a domain and its neighbours and to perform cross checks to aid in identifying topology

mismatches. The domains network engineers can then act upon this and update their topologies

accordingly.

2.7 Architecture components - Interfaces

In this subsection we describe the design of the architecture components previously discussed. We

therefore specify the components' interfaces, i.e. the minimum set of functions that should be

supported by each of the three main architecture components.

2.7.1 Topology Index – interface design

The following functions represent the minimal functionality that should be implemented by Topology

Index:

 getIndex() returns the complete topology index to the requesting domain. The returned

object contains information about all entries within the topology index. This method could be

used by the requesting party in order to e.g. create the complete network graph.

 updateIndex(domainId, topologyData) updates the data in the index for the given domain. It

requires the authentication of the domain’s topology provider and data verification as

explained in subsection 2.6.3. The update takes place only when both authentication and data

verification succeed.

 subscribeForUpdates(domainId, callbackURL) allows a topology consumer (domain) to

subscribe to the topology index for topology information updates. These updates are provided

to the consumer via the supplied callback URL.

 unsubscribe(domainId) removes a topology consumer (domain) from the list of domains

registered to obtain topology information updates.

2.7.2 Topology Provider – interface design

The following functions represent the minimal functionality that should be implemented by Topology

Provider:

 getTopology(requester) returns customized topology that depends on the identity of the

topology consumer (the requester). Depending on enforced policies between domains (of the

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

18

topology provider and the requester) the returned topology may contain more information

than otherwise. In case no policy is specified for the requester, a default topology is returned.

 getTopology(requester, route) returns a customized topology that depends upon the

following two conditions:

o the policy between the topology provider and the consumer (requester) or

o A list of domains supplied as route which identifies domains that the end-to-end

connection traverses. The former condition precedes is latter one, i.e. in case there

is a peering agreement between the topology provider and the requester, this

function returns a customized topology view. In case there is no such peering

agreement, the topology provider takes into account agreements with domains

included in supplied route list in the same manner as getTopology(requester).

Remark: Peering agreements can make path finding difficult. Conflicts can be introduced that make

path finding next to impossible. Local policy conflicts can be resolved by the topology provider itself

before returning a customized topology result to the requester. However, it becomes complex when

there are conflicts on a global level. Therefore peering agreements should be used with care, simple,

and avoided when possible.

2.7.3 Topology consumer – interface design

The topology consumer may optionally implement callback function topologyUpdate(domains) which

is used by the Topology Index to notify the consumer when there is an update in the index (e.g. a new

provider or updated topology). The domains parameter is a list of domains for which a topology

update has occurred. After the notification is obtained, the list of domains may be analysed by the

topology consumer, and topologies from (a subset of) domains’ list may be requested. This improves

the efficiency of the implementation of the topology consumer, and reduces a number of requests

made by the consumers. In order to receive updates the consumer needs to subscribe to the topology

index with this function as callback.

2.8 Evaluation of the proposed Topology Exchange

Architecture using the requirements specified by the

OGF NSI working group (NSI-WG)

In this subsection we show how our solution addresses the topology exchange requirements recently

introduced by the NSI group, which represent a foundation for the evaluation of the topology

exchange proposals within it. This is done in the following three tables, in which column requirement

specifies the requirements presented by the NSI group, and columns supported and explanation give

more details whether a particular requirement is supported by our architecture, and briefly explain

the solution we offer.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

19

Table 2-3 presents the mandatory requirements, i.e. those based on core NSI principles. In the Table

2-4 the requirements that are highly desirable by NSI are presented. Those requirements resulted

from the discussions within the NSI group. The last group of requirements, given in Table 2-5, present

the requirements that are not yet (fully) formalized, but are put forward to NSI in order to be answered

in the future.

Table 2-3 NSI: Mandatory requirements

Requirement Supported Explanation

Solution must allow the
topology information to be
shared between NSAs

Yes Each NSA can implement topology provider (TP) and therefore
share its topology information with other NSAs that would act
as topology clients (TCs)

Solution must allow AG
NSAs to aggregate topology

Yes The AG NSA serves as TC towards NSAs that it aggregates (which
are in this case TPs). The AG NSA than acts as TP on behalf of
aggregated NSAs towards NSAs other than aggregated. This
does not require topology index at AG NSA, but AG NSA knows
each one of aggregated NSAs.

Solution must support
chain based path signalling

Yes The proposed topology architecture does not impact signaling
at all.

Solution must support tree
based path signalling

Yes The proposed topology architecture does not impact signaling
at all.

Solution must support
centralized path finding for
source-based routing
decisions

Yes The multiple PCE algorithms are supported by the architecture,
including the source-based ones. This means that centralized
path finding takes place at “source-based” PCE that relies upon
“source-based” TC to obtain required topology information

Solution must support
distributed path finding for
hop-by-hop routing
decisions

Yes The multiple PCE algorithms are supported by the architecture,
including the greedy ones (i.e. “hop-by-hop” algorithms).

Solution must allow the
creation of a full view of
network topology to
perform advanced
"intelligent" routing
decisions

Yes It is possible to obtain topologies from all TPs that have shared
information with TI. Based on this a full network graph can be
created, and used further for e.g. path-finding.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

20

Requirement Supported Explanation

Topology must contain
versioning information (e.g.
Creation/modify time stamp
used to determine if an older
version of the topology can be
replaced with a newer one)

Yes Topology Index data model has versioning field.

Topology must be verifiable (e.g.
Topology must be signed by the
author before uploading to
topology server. Note: Key
signing infrastructure and trust
relationships must be in place
for this to work and only
complete topologies can be
signed)

Yes Topology Index data model contains signature field as
well. Topology Providers can sign the topology
documents, provided that key-signing infrastructure is in
place. Furthermore, TI signs with its own key information
that is distributed, which can be validated by either TP or
TC as they possess the corresponding keying material
necessary to verify the signature. TI can apply the
asymmetric key solutions in order to provide
confidentiality on top of other security mechanisms,
which means that only the intended recipient could derive
topology information.

Topology service should support
temporal related queries (e.g.
give me anything new you have
learned since <date/time>)

Not at the
moment

The decision not to implement this is due to the fact that
we want to keep the data model at TI as simple as
possible, as well as the components within our
infrastructure. Our understanding is that timestamp
information could be added to the TI data model, and
used to obtain the topologies changed after certain point
of time in the past. However, if the intention is to obtain
difference (“diff”) from the previous topologies (e.g. ports
removed/added in the meantime) we do not support this
at the moment, and extension of the TI would be
necessary.

Topology service should support
stand-alone model: single server
serving single topology

Yes

Topology service should support
central model: single server
serving multiple topologies

Yes

Topology service should support
distributed model: topology
information can be “flooded”
between topology servers

No We have conceptually different approach because the
flooding model leads to inconsistencies in the overall
network topology representations (due to timing issues).
We have implemented callback mechanism instead in
which each topology client could register to obtain
updates.

Should support getTopology -
allows a user (which can be
behind a firewall) to get one or
more topologies

Yes This is implemented by TCs and TPs.

Should support putTopology -
allows a service provider to

Yes/No We do not have a centralized topology server, instead TP
notifies TI about the topology (URL, version, etc).

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

21

Requirement Supported Explanation

upload its topology onto the
topology server

Should support
subscribeTopology - allows a
user to subscribe to receive any
changes in the topology
information, resulting in a
“push” of the new data

Yes

Should support
unsubscribeTopology - allows a
user to delete their subscription

Yes The entry is removed from TI

Table 2-4 NSI: Highly desirable requirements

Requirement Supported Explanation

Support distribution of
topology for purposes other
than path-finding, e.g.
monitoring, measurements,
and visualization

Yes We have demonstrated how our solution could be used for e.g.
monitoring. Besides, our architecture could be used to
distribute any type of documents within the network (e.g.
resource documents)

Support separate topology
views for different user
groups

Yes Each user group could have its own TC.

Support distribution of
documents other than
topology (e.d. NSA
description document,
SLAs, etc)

Not clear The architecture is generic and can be used to distribute any
kind of documents. However, a separate implementation of the
components would be necessary to support other documents.

Support
application/project/deploy
ment specific path finding
for different user groups

Yes There could be PCEs per user groups

Support expiration or
revocation of topology

Yes Supported by TPs themselves.

Support for applying local
policy via modification of
the topology/reachability
information

Yes TP decides, based on the requesting party which information to
share.

Topology Exchange Architecture

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

22

Requirement Supported Explanation

Supports policy-based
routing enforcement

Partially Depends on policies in place. All policies that could “translate”
to one of the following:

- include/exclude domain(s) (could be ordered list)

- include/exclude link(s)

are supported by our solution. However, an implementation of
the policy evaluation is necessary.

Support for notification and
removal of misbehaving
topology services

Yes TI could delete the key of the TP, as well as data entries relating
to this misbehaving TP.

Table 2-5 NSI: Not yet formalized requirements

2.9 Topology Exchange Architecture – Conclusions and

Recommendations

In this section we have presented architecture for topology exchange within the NSI. Although this

solution is generic (i.e. it could be used in any networked environment), it fulfils many requirements

for the successful implementation within NSI. From the perspective of MOTE project, it supports

push/pull topology update mechanism, which is one of the basic principles for the automated topology

exchange solution. This means that notifications about any relevant domain topology updates would

be propagated. The main requirement for the OpenFlow domains is therefore to implement both

Topology Client and Topology Provider architecture components.

As the documents exchanged within NSI are using NML standard format, it goes without saying that

the OpenFlow domains should export their topologies in this format. Therefore, in the next sections,

we investigate the topology information within OpenFlow domains and whether NML format can be

used to model OpenFlow topologies. Subsequently we analyse how to convert the topology

representation within OpenFlow into the NML format, and how to exchange this topology information.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

23

3 Experiments

In this section we describe different experiments performed with topology software. We first describe

the setup that has been used for some of the experiments, the MOTE OpenFlow testbed. Then we

briefly introduce the main topology discovery and topology representation at OpenFlow controllers,

and explain in more detail how to access topology information from the Floodlight, the OpenFlow

controller of our choice. Next we describe the OpenFlow topology discovery experiments (based on

LLDP) performed using MOTE testbed and how is this information presented at OpenFlow controllers.

We discuss the main issues with LLDP topology discovery and how to address them. Next, we describe

the implementation and experiments with the topology exchange architecture. Then we discuss the

extensions required at OpenFlow domains in order to allow topology exchange between OpenFlow

and NSI domains. We conclude this section with recommendations and observations from our

experiments.

3.1 MOTE Testbed

The MOTE project planning states that multiple connected OpenFlow networks with separate

controllers are required are required to perform the experiments. The minimal required environment

was specified to consist of the two OpenFlow domains, each running its own OpenFlow controller.

These domains were deployed at SURFsara and UvA, respectively. However, the actual deployment of

the testbed exceeded the planning, as a total of eight OpenFlow-enabled switches were obtained for

the testbed. This allowed a lot of freedom for re-configuring the network, and deployment of multiple

(sub)-domains within the testbed itself. Hence there was no need to extend the testbed including

other NRENs. The deployed testbed at UvA is shown in Figure 3-1. A similar testbed setup was

deployed at SURFsara, and hence is not shown. Figure also illustrates the two sites were connected

with a deployed (optical) link between them.

The switches that are used within MOTE testbed are: Pica8 P-3290, HP 2920-24G (J9726A), Dell

Networking N2024, Dell Networking N3024. The reasoning for this deployment was to use as many as

possible OpenFlow-enabled switches from different vendors in order to detect any compatibility

issues (e.g. with LLDP).

At Figure 3-1 an overview of the ports used to connect switches is also shown. Besides, the two Dell

switches for this particular experimental setup were configured as “non-OpenFlow-enabled” switches.

Different controllers were deployed for Pica8 and HP switches, respectively, thus resulting in two OF

domains (1 and 2). Finally, we configured three virtual bridges at the Pica8 switch within OF domain

1. This testbed configuration allowed us to experiment with setups in which OF domains (“islands”)

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

24

are connected through non-OF domains and to observe the topologies discovered by the controllers

at OF domains.

The complete UvA MOTE testbed setup, with an overview of the controllers, hosts and switches, and

a (partial) mesh network topology is shown in Figure 3-2.

Figure 3-1: MOTE testbed example deployment at UvA.

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

25

Figure 3-2: Complete MOTE testbed at UvA

3.2 Topology Discovery at OpenFlow domains

Network topology discovery is the process of automatically generating a network topology. Models

that describe the working of computer networks often distinguish different functional layers. As a

consequence, Network Topology Discovery can be done on different layers of the network. The

physical topology, for example, gives an overview of the physical interconnections between all devices

in the network. The logical topology displays the data flow between devices according to the protocols

that are used on the different functional layers. Examples are Ethernet, or Internet Protocol (IP).

We define the topology discovery within OpenFlow domain as the discovery of switches, links, and

hosts within this domain. A switch is initially configured with a master controller IP address and a set

of slave controller IP addresses. When the switch establishes a (TCP) connection to a controller,

controller sends a feature request message to the switch and waits for a reply. When the reply reaches

to the controller, controller gets informed about the features provided by the switch, for instance, the

datapath ID (i.e., DPID), list of ports, etc. The link discovery is based on LLDP and BDDP protocols.

Currently there is a plethora of the (open source) OpenFlow controllers which means different

topology discovery implementations by different controllers and, more important, (very) different

topology formats may be used by these controllers. A brief overview of the main features of some of

the most popular controllers is as the following:

A RYU controller has a basic topology discovery application which monitors datapaths and launches

topology events when topology changes occur. The current controller implementation provides a

parser skeleton used only to debug topology-relating events. This requires extension of the supplied

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

26

topology discovery application and is not clear how would this integrate with topology exchange

components. Similar observations could be made for POX controller.

Floodlight controller provides, in our opinion, the most suitable topology discovery functionalities.

This controller is developed using a modular architecture and the modules are either controller or

application ones. It allows for easy and fast integration of developed modules which we consider

important as it reduces the development cycle. Besides, in order to establish end-to-end connectivity,

it is important to have functionality that supports static flow pushing. This has been made available in

Floodlight via REST API. Due to the fact that our solution requires that topology client and topology

provider are implemented for each controller, and taking into account limited effort allocated for this

activity, we have chosen to perform topology experiments using exclusively Floodlight controller.

3.2.1 Relevant modules within Floodlight Controller

The modular architecture of Floodlight controller is shown in Figure 3-3. From the topology

perspective, the most important modules are Link Discovery Manager, Topology Service and Device

Manager. The Device Manager keeps track of the devices or hosts via OF PacketIn requests. By using

these requests it can also learn to which port of which switch a particular device is connected. The

Topology Service computes topologies based on link information from the Link Discovery Manager. A

term “OpenFlow island” is used to indicate a group of connected OpenFlow-enabled switches that are

managed by the same instance of an Floodlight. In addition the islands can be interconnected using

non-OpenFlow switches on the same layer 2 domain.

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

27

Figure 3-3: Floodlight Modular Architecture

The Topology Service computes topologies based on link information it learns from the Link Discovery

Service. All the information about the current topology is stored in an immutable data structure called

the topology instance. If there is any change in the topology, a new instance is created and the

topology changed notification message is called.

We need to implement Topology Client and Topology Provider, as well as path computation element

(PCE) in order to provide for automatic topology exchange and, accordingly path re-calculations based

on these updates. We have decided to implement these as Floodlight modules. These modules need

to listen for changes in topology so they need to implement the ITopologyListener interface.

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

28

3.3 Topology Discovery at OpenFlow domains –

Experiments

We investigated different topology setups at MOTE testbed and here we show the most insightful

experiments. For each setup, a Floodlight topology representation (switches, links, etc.) has been

obtained using REST API.

3.3.1 Experimental setup 1

Figure 3-4: Topology discovery setup one

The first setup is shown at Figure 3-4. This setup consists of two OF domains that are interconnected

through “conventional” Dell switches. The default configuration of each one of the conventional (Dell)

switches does not have LLDP support enabled, so we had to enable it. The OF domains (HP and Pica8,

respectively) in this setup are not the OF islands, as we configured these to be in two actual separate

domains. Each OF domain is controlled by a separate Floodlight controller. Besides, we have

configured three virtual bridges within Pica8 switch. Using the REST API and standard curl scripts, we

have obtained the results from the Pica8 Floodlight controller. These results are shown in compressed

format in Appendix A.

The results show that the Pica8 controller obtains erroneous information about the network topology,

i.e. port 12 from Pica8 is “linked” to port 11 of the same switch, and this type of link is external. On

the other hand, port 12 appears to be linked to port 5 of the Dell 2024 switch, and this type of link is

external as well. This is correct information. On the other hand side, the Pica8 switch cluster contains

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

29

correct information about the switches (bridges br0, br1 and br2) that are within the same domain.

Similar conclusions could be drawn for ports 1 and 12 of Pica8 switch. So, in order to remove these

incorrectly identified loops during the topology discovery the procedure is as the following:

1. Identify switches from the same cluster

2. Remove any “external link” entry between the switches from the same cluster.

The main issue here is that this procedure would work for Floodlight controllers only. It is highly likely

this solution is not applicable to OpenFlow domains that have other type(s) of controllers deployed.

Therefore, for each of these domains, a fresh look into this issue is mandatory.

3.3.2 Experimental setup 2

Figure 3-5 Topology discovery setup two

The first setup is shown at Figure 3-5. Different from previous one, there is a single link between any

two given switches in the domain. The similar loop issue as identified in the previous setup. Yet

another issue may be illustrated here. It can be resolved that Pica8 port 1 is connected to a different

domain, i.e. the one that contains switch Dell 2024. In order to automatically create topology

description within NML format, a domain ID/remote port ID resolution is necessary. In this particular

case, Dell domain ID should be known by Pica8. We suggest to configure the LLDP port description of

the switches for this purpose. This might not be supported by every switch.

A snippet of the configuration script for Dell 2024 that allows this is as the following:

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

30

interface Gi1/0/1

description "MOTE Dell 2024 port 1"

switchport mode trunk

switchport trunk allowed vlan 1,10,20,30

lldp transmit-tlv port-desc sys-name sys-desc

sys-cap

lldp transmit-mgmt

lldp notification

exit

This LLDP modification worked flawlessly on all switches we have applied this solution (Dell and Pica8).

However, the question is whether this applies to every single switch that is deployed nowadays. This

is therefore yet another point of attention for any further deployments of the MOTE solution.

3.3.3 Recommendations and Conclusions

The topology discovery experiments clearly indicated some of the most important issues and some

points of attention:

1. The “off-the-shelf” configuration of the switches need to be checked, as we have encountered

the issue that LLDP was not enabled by default (Dell switches in our testbed)

2. In order to facilitate the resolution of the remote domain to which a port is attached to,

modification of the LLDP port description may be necessary. This LLDP modification has to be

supported by the controller, i.e. the controller needs to extract this information from LLDP

packets. This is true for the Floodlight controller, but need to be verified for other controllers

as well. Besides, the switches that are deployed in other domains need to support LLDP port

description configuration as well.

3. The main issue encountered is the one with the loops, i.e. that two ports that belong to the

same OF domain are presented as connected through and external link. The proposed solution

to look in the topology discovery results applies to the Floodlight controllers only. This may

not be a solution for any OF domain with different type of controller. Therefore, further

investigation of this issue for different controllers is mandatory.

4. The Floodlight controller has very rich topology representation format, and offers a solid REST-

based API to automatically deduce intra-domain topology, as well as resolution of the local

port – link – remote port/domain constructions.

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

31

3.4 Topology Exchange Architecture experiments

We deployed our proof-of-concept architecture implementation within the Automated GOLE

environment. The proof-of-concept was also demonstrated during the SuperComputing conference in

November 2014. The implementation consists of (a single) Topology Index, multiple Topology

Providers, and different Topology Consumers (e.g. lookup service, path finder). No security (e.g.

authentication, signatures) was implemented. The Automated GOLE testbed shown in Figure 3-6

consists of dedicated switching hardware at the various GLIF Open Lightpath Exchanges (GOLEs). The

testbed represents a worldwide implementation of the NSI standard in multiple Open Exchanges. The

links in between GOLEs provide a certain amount of bandwidth, either as a full link dedicated to the

Automated GOLE, or sub--rate circuits that may be allocated.

Figure 3-6: Automated GOLE testbed.

3.4.1 Implementation Details

The topology exchange implementation for the Automated GOLE is written in Python using Flask

[FLASK]. The architecture components act as web services and exchange messages in JSON format on

top of HTTP. The components ran together with a GUI on a virtual machine with two cores and 2 GB

of RAM. In total there were 24 domains and 265 network endpoints shared as topology documents

specified in NML. The memory usage by different components remained stable regardless the number

of topology updates, and was at most 30 MB for topology provider. Flask uses about 14 MB of memory

and all the components are built on top of this. The memory usage of the components also depends

on the size of the topology it serves.

Figure 3-7 shows a picture of the topology exchange running on top of the Automated GOLE. The

participating networks currently provide their topology documents using the Document Discovery

Service (DDS). All individual topologies are aggregated and presented as a single XML document. The

Experiments

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

32

Automated GOLE uses the standardized NML format to describe their topologies. Therefore, we

developed a simple NML parser and integrated it into the Topology Provider.

Normally each network would run its own topology provider - however we used the aggregated DDS

document and extracted the NML documents for each domain. For every domain we launched a

separate topology provider. The topology providers checked the Netherlight aggregator at a regular

interval for new versions of topology documents.

Figure 3-7: Topology exchange implementation

A couple of topology consumers were implemented, namely a Lookup Service (LS) to find what domain

belongs to an endpoint, and a Path Finder to calculate the shortest path between two endpoints. All

consumers subscribe to the topology index and receive and process the incoming updates. The lookup

service keeps tracks of all topologies. In addition, to avoid inconsistency as a result of lost updates, it

regularly requests updates from the topology index. The path finder operates differently. To reduce

overall load it keeps (in memory) the topologies of the domains previously used and updates them

when notified.

When a new request comes in, the path finder retrieves the topologies for the domains that are not

stored in memory and does the path calculation. The resulting path is then stored in memory. The

newly retrieved topologies are also kept in memory and are being tracked. To optimize response time

on frequently requested paths, the path finder provides the previously calculated path to all requests

within certain time interval that can be specified. After the expiration of such time interval, that

particular path is re-calculated again. This may have a penalty of possible inconsistency, which needs

to be addressed in the future work.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

33

4 NML representation of the OpeFlow domain

In this section we briefly summarize the main conclusions and recommendations from the MOTE MS

1.1 deliverable [MOTE-MS1.1]. The Network Markup Language (NML) base schema defines a generic

structure for layered networks, based on the concepts defined in ITU-T G.800 [G.800]. The base

schema is technology-agnostic. In order to describe a specific network layer, an extension is required.

In the current implementation of Network Service Interface (NSI) connection service, each Service

Termination Point (STP) is technically a client VLAN (C-VLAN). The proposed NML-Ethernet extension

defines the subset of the Ethernet standards that is sufficient for the NSI use case. Since OpenFlow is

also able to router flows based on client VLANs, this allows NSI and OpenFlow to interwork. Both

OpenFlow as well as NSI connection service use VLANs as the de-facto resource labels for inter-domain

traffic engineering, although both are designed to cope with other labels in the future (e.g. MPLS

labels). It is trivial to extend NML with such support.

The main conclusion is that the existing NML base standard is sufficient to describe OpenFlow network

topologies. This is impressive result taking into account that NML has been proposed long time before

OpenFlow concept has been introduced at all.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

34

5 Extensions to the Floodlight Controller

In this section we briefly describe the main features of the Topology Provider and Topology Client

when deployed at the Floodlight controller. Both components are deployed as Floodlight modules.

5.1 Topology Provider

As already discussed, the Floodlight internally discovers and maintains the network topology. The

Topology Service computes topologies based on link information it learns from the Link Discovery

Service. All the information about the current topology is stored in an immutable data structure called

the topology instance. If there is any change in the topology, a new instance is created and the

topology changed notification message is called. Floodlight exposes, among others, API for topology

queries, as well is topology listener interface.

The Topology Provider needs to listen for changes in topology which means it needs to implement

ITopologyListener interface. Once a change occurs, TP obtains the topology from controller, resolves

the loops issue (as explained in subsection 3.3.1), and then uses NMLBuilder to create topology model

in NML format. Once this is done, TP notifies Topology Index about the new version of the OF-domain

topology. The rest of the functionality has already been explained.

A code snippet is as the following:

public class TopologyProvider implements IFloodlightModule,

ILinkDiscoveryListener {

protected IFloodlightProviderService floodlightProvider;

protected ILinkDiscoveryService linkDiscoverer;

…

@Override

public void init(FloodlightModuleContext context) {

this.floodlightProvider =

 context.getServiceImpl(IFloodlightProviderService.class);

Executive Summary

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

35

this.linkDiscoverer =

 context.getServiceImpl(ILinkDiscoveryService.class);

//add self as one of the link events listeners

 this.linkDiscoverer.addListener(this);

…

}

//Some of the topology queries related to device status

this.floodlightProvider.getAllSwitchDpids();

//Get a particular switch

IOFSwitch switch = this.floodlightProvider.getSwitch(switchID);

//Get ports on a switch

Collection<ImmutablePort> ports = switch.getPorts();

//Some of the code relating to connectivity status

//Get all links

Map<Link, LinkInfo> links = this.linkDiscoverer.getLinks();

//Get end points of a link

Link link = …;

long dstDpid = link.getDst();

long srcDpid = link.getSrc();

short dstPort = link.getDstPort();

short srcPort = link.getSrcPort();

}

5.2 Path finding (topology client)

The topology client implemented for the OF domains is the path finding element. There is no

difference in functionality already explained for the topology architecture. Path finder has to obtain

the NML format for its own domain as well, as this is maintained by the topology provider. We have

implemented the basic path finding algorithm explained in [TOPO-PROPOSAL]. We briefly state the

main features of the path finding algorithm here – omitted details could be found in cited reference.

Though conventional shortest path algorithms such as the Dijkstra's algorithm may be used by the

path finder to find a simple, shortest inter-domain path between two distinct domains, a more

intelligent algorithm is needed to accept more path requirement details, and provide an inter-domain

path that satisfies the given requirements in return.

Executive Summary

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

36

Examples of path requirements that could be requested by the clients are:

1. A set of domains must not be part of the multi-domain path.

2. A set of inter-domain links must not be part of the multi-domain path.

3. A set of domains must be part of the multi-domain path.

4. A set of inter-domain links must be part of the multi-domain path.

5. A set of domains must be in a predefined sequence in the multi-domain path.

The first two requirements can be fulfilled by pruning out all of the forbidden domains and inter-

domain links before creating the topology graph that would be used for path computation. The

resultant topology graph would is treated as the input to the algorithm. The last three requirements

are considered during the path computation process.

5.3 Experiments

We performed two sets of topology exchange experiments:

1. Experiment that verified topology exchange between two OF domains (illustrated in Figure

5-1). Each of the two OF domains contains a single switch (SW), single host (H), Floodlight

controller (FL), and Topology Provider (TP), respectively. Figure also illustrates steps that

happen once the topology provider is notified about change in local topology.

2. Experiment that extended the experiment explained in subsection (illustrated in Figure 5-2).

While in the first experimental setup we had a path finding component that resides at an OF

domain, in this case we have a centralized path finder that is located somewhere in the

network.

Executive Summary

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

37

Figure 5-1: Topology exchange between two OF domains.

Figure 5-2: Topology exchange between OF domain and Automated GOLE.

Both sets of experiments verified that our topology exchange architecture could be extended with

support for OF domains within NSI or could support network that consist of different OF domains only.

This holds as long as the controller used by OF domains is Floodlight. In the future, the end-to-end

connectivity need to be addressed. In practice, Floodlight is suitable for this implementation of such

functionality as well, as it provides for Static Flow Pusher module that is exposed via REST API.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

38

6 Conclusions

The MOTE project had as a goal to research methods for describing and exchanging topologies

between NSI and OpenFlow networks. This would allow the NSI to become aware of these networks.

On the other hand, network topologies are not static, as networks are constantly upgraded and

maintained, which results in ever changing topologies. This would require from the topology exchange

solutions to automatically propagate topology changes between different domains.

The topology exchange architecture delivered by the MOTE project provides a method to easily

integrate different topology clients and flawlessly supports exchange of topologies specified in NML

(or other previously agreed) format between NSI and OpenFlow networks. The NML also proved to be

suitable for standardizing topology instances maintained by versatile OpenFlow controllers, as each

controller has its own topology format.

The main technical concern is the automated topology discovery within OpenFlow domains. Topology

discovery is based on Link Layer Discovery Protocol (LLDP) and, to be of use, this protocol has to be

supported (and configured by default) by other (conventional or OpenFlow-enabled) switches. In

order to allow us to easily build NML documents within the OpenFlow domains, a way to identify the

neighbouring domains is necessary. We have solved this by extending the LLDP port description. Again,

this LLDP modification has to be supported by the all switches, thus including the switches that are

deployed in other domains.

However, the main issue encountered with topology discovery is the loop issue, i.e. scenario when

two ports that belong to the same OF domain are presented as connected through an external link.

Careful examinationof Floodlight, the chosen controller to build proof-of-concept allowed us to find a

way to resolve this issue. However, the proposed solution is not applicable to other OpenFlow

controllers and represents, next to the fact that different controllers use different formats to model

topology (if at all!) two challenges that have to be addressed in future extensions of the MOTE work.

Besides these accomplishments, the results of MOTE made impact within NSI community as topology

exchange architecture is considered for standardization, and two additional standard proposals are in

pipeline. A successful demo of the topology exchange architecture was given at the last edition of

SuperComputing, and another one is scheduled for the next edition of the GENI conference. Last, but

not least, a MOTE article will appear in the next edition of CONNECT magazine, and a scientific paper

is submitted to the well-known conference.

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

39

Appendix A Experimental results

A.1 Topology discovery experiment 1

pica8@c1:~$ curl -s http://127.0.0.1:8080/wm/device/

[{"entityClass":"DefaultEntityClass","mac":["82:5d:63:8e:df:4f"],"ipv4":["

10.9.30.101"],"vlan":[],"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e

9:95:12","errorStatus":null,"port":12},{"switchDPID":"8f:0e:08:9e:01:e9:95

:12","errorStatus":null,"port":5},{"switchDPID":"e5:e6:08:9e:01:e9:95:12",

"errorStatus":"duplicate-device","port":9}], "lastSeen":1426524419527},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2c:0f:64"],"ipv4":[],

"vlan":[],

"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","errorStatus":n

ull,"port":12}], "lastSeen":1426524320249},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2b:9b:40"],"ipv4":[],

"vlan":[],

"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","errorStatus":n

ull,"port":12},

{"switchDPID":"e5:e6:08:9e:01:e9:95:12","errorStatus":null,"port":11}],"la

stSeen":1426524417066},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2c:0f:63"],"ipv4":[],

"vlan":[],

"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","errorStatus":n

ull,"port":12},{"switchDPID":"e5:e6:08:9e:01:e9:95:12","errorStatus":null,

"port":9}],"lastSeen":1426524420955},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2b:9b:41"],"ipv4":[],

"vlan":[],

"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","errorStatus":n

ull,"port":12},{"switchDPID":"e5:e6:08:9e:01:e9:95:12","errorStatus":null,

"port":9}],"lastSeen":1426524420733},

{"entityClass":"DefaultEntityClass","mac":["36:9d:f1:47:1b:74"],"ipv4":["1

0.9.20.101"],

Experimental results

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

40

"vlan":[],"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","erro

rStatus":null,"port":12},{"switchDPID":"8f:0e:08:9e:01:e9:95:12","errorSta

tus":null,"port":5}], "lastSeen":1426524421165}]

pica8@c1:~$ curl -s http://127.0.0.1:8080/wm/topology/switchclusters/json

{"e5:e6:08:9e:01:e9:95:12":["e5:e6:08:9e:01:e9:95:12"],

"8f:0e:08:9e:01:e9:95:12":["5e:3e:08:9e:01:e9:95:12","8f:0e:08:9e:01:e9:95

:12"]}

Pica8:~$ curl -s http://127.0.0.1:8080/wm/topology/links/json

[{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":2,"src-port-

state":0,"dst-switch":"8f:0e:08:9e:01:e9:95:12","dst-port":5,"dst-port-

state":0,"type":"internal"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":12,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":1,"dst-port-

state":0,"type":"external"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":3,"src-port-

state":0,"dst-switch":"e5:e6:08:9e:01:e9:95:12","dst-port":9,"dst-port-

state":0,"type":"internal"},

{"src-switch":"e5:e6:08:9e:01:e9:95:12","src-port":10,"src-port-

state":0,"dst-switch":"8f:0e:08:9e:01:e9:95:12","dst-port":8,"dst-port-

state":0,"type":"internal"},

{"src-switch":"8f:0e:08:9e:01:e9:95:12","src-port":5,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":2,"dst-port-

state":0,"type":"internal"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":1,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":12,"dst-port-

state":0,"type":"external"},

{"src-switch":"e5:e6:08:9e:01:e9:95:12","src-port":11,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":1,"dst-port-

state":0,"type":"external"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":1,"src-port-

state":0,"dst-switch":"e5:e6:08:9e:01:e9:95:12","dst-port":11,"dst-port-

state":0,"type":"external"},

Experimental results

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

41

{"src-switch":"8f:0e:08:9e:01:e9:95:12","src-port":8,"src-port-

state":0,"dst-switch":"e5:e6:08:9e:01:e9:95:12","dst-port":10,"dst-port-

state":0,"type":"internal"},

{"src-switch":"e5:e6:08:9e:01:e9:95:12","src-port":9,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":3,"dst-port-

state":0,"type":"internal"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":12,"src-port-

state":0,"dst-switch":"e5:e6:08:9e:01:e9:95:12","dst-port":11,"dst-port-

state":0,"type":"external"},

{"src-switch":"e5:e6:08:9e:01:e9:95:12","src-port":11,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":12,"dst-port-

state":0,"type":"external”}]

A.2 Topology discovery experiment 2

pica8@c1:~$ curl -s http://127.0.0.1:8080/wm/device/

[{"entityClass":"DefaultEntityClass","mac":["82:5d:63:8e:df:4f"],"ipv4":["

10.9.30.101"],"vlan":[],"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e

9:95:12","errorStatus":null,"port":1}],"lastSeen":1426526633320},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2c:0f:64"],"ipv4":[],

"vlan":[],"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","erro

rStatus":null,"port":1},{"switchDPID":"e5:e6:08:9e:01:e9:95:12","errorStat

us":"duplicate-device","port":11}],"lastSeen":1426526634869},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2b:9b:40"],"ipv4":[],

"vlan":[],"attachmentPoint":[{"switchDPID":"e5:e6:08:9e:01:e9:95:12","erro

rStatus":null,"port":11}],"lastSeen":1426526633799},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2c:0f:63"],"ipv4":[],

"vlan":[],"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","erro

rStatus":null,"port":1}],"lastSeen":1426526633599},

{"entityClass":"DefaultEntityClass","mac":["f8:b1:56:2b:9b:41"],"ipv4":[],

"vlan":[],"attachmentPoint":[{"switchDPID":"5e:3e:08:9e:01:e9:95:12","erro

rStatus":null,"port":1}],"lastSeen":1426526636615},

Experimental results

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

42

{"entityClass":"DefaultEntityClass","mac":["36:9d:f1:47:1b:74"],"ipv4":["1

0.9.20.101"],"vlan":[],"attachmentPoint":[{"switchDPID":"e5:e6:08:9e:01:e9

:95:12","errorStatus":null,"port":11}],"lastSeen":1426526636946}]

pica8@c1:~$ curl -s http://127.0.0.1:8080/wm/topology/switchclusters/json

{"8f:0e:08:9e:01:e9:95:12":["5e:3e:08:9e:01:e9:95:12","e5:e6:08:9e:01:e9:9

5:12","8f:0e:08:9e:01:e9:95:12”]}

pica8@c1:~$ curl -s http://127.0.0.1:8080/wm/topology/links/json

[{"src-switch":"e5:e6:08:9e:01:e9:95:12","src-port":9,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":3,"dst-port-

state":0,"type":"internal"},

{"src-switch":"e5:e6:08:9e:01:e9:95:12","src-port":11,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":1,"dst-port-

state":0,"type":"external"},

{"src-switch":"8f:0e:08:9e:01:e9:95:12","src-port":5,"src-port-

state":0,"dst-switch":"5e:3e:08:9e:01:e9:95:12","dst-port":2,"dst-port-

state":0,"type":"internal"},

{"src-switch":"8f:0e:08:9e:01:e9:95:12","src-port":8,"src-port-

state":0,"dst-switch":"e5:e6:08:9e:01:e9:95:12","dst-port":10,"dst-port-

state":0,"type":"internal"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":1,"src-port-

state":0,"dst-switch":"e5:e6:08:9e:01:e9:95:12","dst-port":11,"dst-port-

state":0,"type":"external"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":3,"src-port-

state":0,"dst-switch":"e5:e6:08:9e:01:e9:95:12","dst-port":9,"dst-port-

state":0,"type":"internal"},

{"src-switch":"5e:3e:08:9e:01:e9:95:12","src-port":2,"src-port-

state":0,"dst-switch":"8f:0e:08:9e:01:e9:95:12","dst-port":5,"dst-port-

state":0,"type":"internal"},

{"src-switch":"e5:e6:08:9e:01:e9:95:12","src-port":10,"src-port-

state":0,"dst-switch":"8f:0e:08:9e:01:e9:95:12","dst-port":8,"dst-port-

state":0,"type":"internal"}]

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

43

References

[SDN] https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf

 Open Networking Foundation, “Software-Defined Networking: The New

Norm for Networks”.

[G.800] http://www.itu.int/rec/T-REC-G.800/

“Unified functional architecture of transport networks”, ITU-T

Recommendation G.800.

[NML] http://www.ogf.org/documents/GFD.206.pdf

J. van der Ham (editor), F. Dijkstra, R. Łapacz, J. Zurawski, “GFD.206:

Network Markup Language Base Schema version 1”, May 201

[FlowVisor] R. Sherwood, G. Gibb, K.-Kiong Yap, G. Appenzeller, M. Casado, N.

McKeown, G. Parulkar† “FlowVisor: A Network Virtualization Layer”,

Technical report, 2009.

[OGF] https://www.ogf.org/ Open Grid Forum (OGF)

[NSI-FW] http://www.ogf.org/documents/GFD.213.pdf G. Roberts, T. Kudoh, I.

Monga, J. Sobieski, C. Guok, J. MacAuley “GFD.213: Network Services

Framework v2.0”.

[CONNECT-paper] M. Živković, P. Grosso, C. de Laat, F. Dijkstra, D. Vandevenne “MOTE: Multi-

Domain OpenFlow Topology Exchange”, accepted for CONNECT

publication.

[NSI-WG] https://redmine.ogf.org/projects/nsi-wg The Network Services Interface

Working Group.

[TRIDENTCOM-paper] R. Koning, S. Konstantaras, M. Živković, F. Iqbal, C. de Laat, P. Grosso

“Architecture for Exchanging Topology Information in Multi--domain

Environments”, submitted to 10th IEEE International Conference on

Testbeds and Research Infrastructures for the Development of Networks &

Communities (TRIDENTCOM).

[TOPO-PROPOSAL] https://redmine.ogf.org/dmsf_files/13400?download=

R. Koning, M., S. Konstantaras, P. Grosso, F. Iqbal, F. Kuipers: “UvA/TU Delft

topology exchange and path finding in NSI environments”, Topology

Exchange proposal submitted to NSI-WG, February 2015.

[MOTE-MS1.1] F. Dijkstra: Open Call Deliverable MOTE MS1.1: NML Extensions.

[NW-MODELLING] J. van der Ham, M. Ghijssen, P. Grosso, C. de Laat: Trends in computer

network modelling

towards the future internet. arXiv preprint arXiv:1402.3951 (2014).

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://www.itu.int/rec/T-REC-G.800/
http://www.ogf.org/documents/GFD.206.pdf
https://www.ogf.org/
http://www.ogf.org/documents/GFD.213.pdf
https://redmine.ogf.org/projects/nsi-wg
https://redmine.ogf.org/dmsf_files/13400?download=%20%20

References

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

44

[RFC-4641] http://www.ietf.org/rfc/rfc4641.txt

O. M. Kolkman, R. Gieben: RFC 4641: DNSSEC Operational Practices.

[FLASK] M. Grinberg: Flask Web Development - Developing Web Applications with

Python. O'Reilly Media, Inc., 2014.

http://www.ietf.org/rfc/rfc4641.txt

Deliverable OCQ-DS3.1
Final Report Multi-domain OpenFlow
Topology Exchange (MOTE)
Document Code: GN3PLUS14-1297-30

45

Glossary

API Application Programming Interface

BDDP Broadcast Domain Discovery Protocol

C-VLAN Client Virtual Local Area Network

DDS Document Discovery Service

DNS Domain Name System

DPID Datapath ID

GLIF Global Lambda Integrated Facility

GOLE GLIF Open Lightpath Exchange

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

LLDP Link-Layer Discovery Protocol

MOTE Multi-domain OpenFlow Topology Exchange

NML Network Markup Language

NSA Network Service Agent

NSI Network Service Interface

OF OpenFlow

OGF Open Grid Forum

PKI Public Key Infrastructure

REST Representational State Transfer

RAM Random Access Memory

SDN Software-Defined Network/Networking

SDP Service Demarcation Point

STP Service Termination Point

TC Topology Consumer

TI Topology Index

TP Topology Provider

VLAN Virtual Local Area Network

VM Virtual Machine

XML Extensible Markup Language

