

31-03-2015

Open Call Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0
Architecture and User Manuals (NSI-
CONTEST)

Open Call Deliverable OCR-DS2.1

Grant Agreement No.: 605243

Activity: NA1

Task Item: 10

Nature of Deliverable: R (Report)

Dissemination Level: PU (Public)

Lead Partner: NXW

Document Code: GN3PLUS14-1299-60

Authors: Giada Landi (NXW), Gino Carrozzo (NXW), Andrea Gronchi (NXW), Giacomo Bernini (NXW),

Bartosz Belter (PSNC), Michał Giertych (PSNC), Michał Balcerkiewicz (PSNC)

© GEANT Limited on behalf of the GN3plus project.

The research leading to these results has received funding from the European Community’s Seventh Framework

Programme (FP7 2007–2013) under Grant Agreement No. 605243 (GN3plus).

Abstract

This deliverable provides the architectural specification and the installation and user documentation for the NSI

Compliance Testing Suite 1.0 prototype. The document describes the components of the NSI CTS system developed in the

NSI-CONTEST project and the different test scenarios supported by the platform. Moreover, the deliverable provides a

guideline for developers of NSI protocol stacks to verify the compliance of their implementation with the NSI v2.0 protocol

specification using the NSI CTS tools.

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60 i

Table of Contents

Executive Summary 1

1 Introduction 2

2 NSI protocol test scenarios 3

2.1 Testing an NSI implementation: the workflow 4

2.1.1 Running tests 4

2.1.2 Getting test results 6

2.1.3 Continuing tests 6

2.2 Testing Requester role 7

2.3 Testing Provider role 8

2.4 Testing Aggregator role 9

3 NSI Compliance Testing Suite System Architecture 11

3.1 NSI CTS Web Portal 12

3.1.1 CTS REST interface 14

3.2 NSI Reference Implementation and Local Test Runner 14

3.2.1 Test Runner REST interface 15

3.3 NSI-CTS platform workflows 20

4 NSI CTS Prototype 24

4.1 Software release 24

4.2 Installation and configuration guide 25

4.2.1 CTS configuration 26

4.2.2 Local Test Runner configuration 29

4.3 User guide 30

1.1.2 SUT configuration and CLI commands for demonstration 35

5 Conclusions 39

Appendix A Sample Scenarios 40

A.1 Requester scenarios 40

A.1.1 Single reservation 40

A.2 Provider scenarios 41

A.2.1 Single reservation 41

A.2.2 Single failed reservation 42

A.2.3 Reserve abort 43

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60 ii

A.2.4 Multiple provisions 44

Appendix B NSI-CTS REST API for Users 47

B.1 Calls 47

B.1.1 Retrieve user projects 48

B.1.2 Get single project information 48

B.1.3 Get scenario templates 49

B.1.4 Get all project testcases 50

B.1.5 Get single project testcase 51

B.1.6 Create a new project testcase 52

B.1.7 Create a new certification testcase 53

References 54

Glossary 54

Table of Figures

Figure 2.1: Workflow to execute a test 5

Figure 2.2: Workflow to collect the results for a test 6

Figure 2.3: Workflow to continue tests 7

Figure 2.4: Scenario to test a Requester Agent 8

Figure 2.5: Scenario to test a Provider Agent 8

Figure 2.6: Scenario to test an Aggregator Agent 9

Figure 3.1: NSI CS v2.0 Compliance Test Suite 11

Figure 3.2: High-level architecture 12

Figure 3.3: NSI CTS web portal – Login and registration page 13

Figure 3.4: NSI CTS web portal – test results 14

Figure 3.5: NSI-RI and local test runner 14

Figure 3.6: Example of local test descriptor for a Provider SUT 18

Figure 3.7: Example of local test descriptor for a Requester SUT 19

Figure 3.8: Test report for a successful result 19

Figure 3.9: Test report for a failed result 20

Figure 3.10: Topology exchange 20

Figure 3.11: Provider workflow 21

Figure 3.12: Requester workflow 22

Figure 3.13: Aggregator workflow 23

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60 iii

Figure 4.1: CTS web portal main page 31

Figure 4.2: Project topology configuration 32

Figure 4.3: Project test cases 33

Figure 4.4: Single test results 33

Figure 4.5: CTS administration panel - overview 34

Figure 4.6: Test scenario template form 34

Table of Tables

Table 2.1: Network Service Agents defined in NSI CS v2.0 specification 3

Table 2.2: Steps to execute a test 5

Table 2.3: Steps to collect the results for a test 6

Table 2.4: Steps to continue tests 7

Table 3.1: NSI-RI components 15

Table 3.2: Test Runner REST API 16

Table 3.3: Test Runner REST API: “POST /job” 17

Table 3.4: Test Runner REST API: “GET /job/{jobID}” 17

Table 3.5: Workflow to test a Provider NSA 21

Table 3.6: Workflow to test a Requester NSA 22

Table 3.7: Workflow to test an Aggregator NSA 23

Table 4.1: NSI CTS: VM structure 25

Table 4.2: NSI CTS: ports used in the start-up configuration 25

Table 4.3: NSI CTS configuration parameters 27

Table 4.4: NSI CTS database configuration parameters 27

Table 4.5: SUT configuration parameters 36

Table 4.6: SUT CLI commands 37

Table 4.7: Reserve request configuration parameters 38

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

1

Executive Summary

This deliverable describes the NSI Compliance Testing Suite (CTS) developed in the NSI-CONTEST

project. The NSI CTS allows NSI developers to test their own implementation of the NSI Connection

Service (NSI CS) protocol stack with a reference implementation of the NSI CS v2.0, compliant with the

standard released from the Open Grid Forum NSI WG. This report describes the NSI CTS architecture

and software prototype, providing the documentation to install the NSI CTS platform and access the

NSI CTS service through the web portal. The document is organized as follows:

 The introduction in section 1 provides a brief description of the NSI CS v2.0 protocol and

explains the benefits of introducing a reference implementation of the NSI stack and a

validation service to certificate the compliance of different NSI implementations with the

standard.

 Section 2 defines the workflows to access and use the NSI CTS service from the perspective of

an NSI developer, detailing the test scenarios to validate different types of NSI Agents

(Requesters, Providers or Aggregators).

 Section 3 describes the architecture and the components of the NSI CTS, specifying the

interfaces of the different modules and the internal workflows in the NSI CTS.

 Section 4 provides the documentation about the NSI CTS software prototype, which is released

in a dedicated Virtual Machine where all the components have been installed with a pre-

defined configuration. This section provides guidelines about how to modify the default

configuration and how to use the NSI CTS tool and service.

The appendixes provides sample templates for NSI test descriptors and documents the REST interface

of the NSI CTS, provided as alternative interface to the web portal to support the programmable

definition and instantiation of NSI test sessions.

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

2

1 Introduction

The Network Service Interface (NSI) v2.0 protocol is an Open Grid Forum (OGF) open standard to

integrate different systems for network resource provisioning in a multi-domain environment. It is

designed as a common interface for both service providers and their clients to request and provide

the network connections. The abstract messaging for network services simplifies and hides their

implementation details while, at the same time, it still offers the same level of service independently

from the technologies behind the scene. The protocol allows to provide different network features

through its extension mechanisms. One of the services specified in the NSI standards suite is the

Connection Service (NSI CS) [NSI-CS-2.0], for the provisioning of point-to-point connections. The NSI

CS v2.0 is exposed as a WebService interface for software implementations.

NSI-CONTEST stands for Network Service Interface Conformance Test Suite (CTS) and it provides a

testing platform prototype to validate NSI agent implementations from NSI developers. It is designed

to support the development process of NSI CS v2.0 third party software with the objective of validating

the compliance of the different implementation with the standard protocol. The NSI CTS offers a way

of rapid building a complete testing environment with different defined scenarios that simplifies the

execution and the repetition of NSI compliance tests. The CTS platform is fully independent from the

specific user implementation and the whole testing process is done through the NSI protocol itself

which means that neither CTS nor user software depends on each other. User agents act as Software

Under Test (SUT) and they are treated as black boxes: their functionalities are examined through their

behaviour and the conditions on the NSI protocol stack. For this purpose, an NSI Reference

Implementation (NSI RI) has been provided to simulate other reference NSI agents in the testing

environment, acting according to the standard NSI protocol defined in the NSI CS v2.0 specification

[NSI-CS-2.0]. Through this approach, the NSI CTS design has provided a modular platform where test

processing and management are independent from the actual implementation of the NSI reference

protocol, so that it can be easily updated to support new versions of the NSI CS protocol or extended

to cover any future NSI service, beyond the initial connection service.

The document is structured as follows:

 Section 2 introduces test scenarios and defines the workflows for the validation of a protocol

stack implemented by an NSI developer.

 Section 3 defines the architecture of the NSI CTS platform and its interfaces.

Section 4 provides the user documentation for the software prototype.

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

3

2 NSI protocol test scenarios

The NSI Compliance Testing Suite (NSI CTS) provides a reference implementation of the NSI

Connection Service (NSI-CS) v2.0 and allows developers of NSI v2.0 protocol stacks to verify the

compliance of their implementation with the standard specification. The platform can be instantiated

as an online service that provides a single point of contact for NSI developers to execute customizable,

isolated and repeatable tests. The NSI CTS platform can emulate different scenarios to validate the

behaviour of all the categories of Network Service Agents (NSAs) defined in the NSI-CS specification:

(ultimate) Requester Agents, Aggregator Agents and (ultimate) Provider Agents (see Table 2.1).

Network Service
Agent (NSA)

Description

(ultimate) Requester

Agent

The originator of a network connection service request. It may be a component of a

middleware application.

Aggregator Agent An NSI agent which coordinates requests to more than one child NSAs and

aggregates their responses.

(ultimate) Provider

Agent

An NSA which coordinates with the local Network Resource Manager (NRM) to

manage and allocate network resources as required in an NSI request.

Table 2.1: Network Service Agents defined in NSI CS v2.0 specification

The NSI CTS has the objective to verify the functions strictly related to the handling of the NSI protocol,

for example the parsing and formatting of NSI messages, including checks about syntax and semantics

of message parameters, and the protocol workflows. The validation of the NSI workflows is performed

checking the behavior of the NSI protocol Finite State Machines (FSMs) simulating a variety of

configurable conditions in the NSI Agent instances which communicate with the NSI Device Under Test

(DUT). This approach allows to cover a wide range of scenarios beyond the typical successful

provisioning of an end-to-end connection, including longer processing time at the NRM to allocate

resources, timeout expirations, or failures due to lack of available network resources. On the other

hand, all the functions that are not directly related to the NSI standard protocol, like the algorithms

for path computation, the NRM in the user domain manager or the associated data plane, the

authentication and authorization mechanisms or custom extensions to the NSI Connection Service are

considered out of scope.

NSI protocol test scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

4

This chapter describes the overall workflow that must be followed by a generic NSI developer to run

a test and get the results and specifies the scenarios supported by the NSI CTS for the different NSI

Agent roles. For each role, it describes the actions and the expected interactions between the NSI DUT

developed by the NSI CTS users and the NSI Reference Implementation (NSI-RI) instances deployed by

the NSI CTS platform.

2.1 Testing an NSI implementation: the workflow

This section presents the different steps which an NSI developer needs to perform to execute a test

that validates an implementation of the NSI CS protocol through the NSI CTS and collect the resulting

report.

2.1.1 Running tests

The validation tests for NSI implementations can be started and configured from the NSI CTS web

portal. The portal provides a set of pre-defined templates which the NSI developer can directly re-use

to request the execution of a test. Templates can be also used as starting point to specify customized

test descriptors with different parameters.

The overall workflow to specify and execute a test is shown in Figure 2.1 and detailed in Table 2.2, for

both manual and automated test. The NSI CTS platform has been designed specifically to support

automated tests, in order to reduce the actions required on the developer’s side.

NSI protocol test scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

5

Figure 2.1: Workflow to execute a test

Step Description

Step 1 The NSI developer registers to the NSI CTS portal.

Step 2 The NSI developer select the tests to be run from pre-defined templates.

Step 3 The NSI developer configures the tests for running (e.g. specifying parameters like timeout, NRM

behaviour, etc.)

Step 4 Automated Tests:

After the developer’s trigger, tests are

automatically executed by the NSI CTS.

Manual Tests:

The test procedure is initiated from the user’s

development platform (e.g. Eclipse). This

option requires further actions from the

developer, e.g. the implementation of

relevant jUnit test cases.

Step 5 Results are collected and stored in the NSI CTS portal.

Table 2.2: Steps to execute a test

NSI protocol test scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

6

2.1.2 Getting test results

The NSI CTS web portal allows the NSI developer to collect the results of the performed tests, as shown

in Figure 2.2 and Table 2.3.

Figure 2.2: Workflow to collect the results for a test

Step Description

Step 1 The NSI developer logins to the NSI CTS portal.

Step 2 After successful login, the NSI developer retrieves the test report, which includes the test

coverage.

Step 3 The NSI developer receives the NSI-CTS certificate, which summarizes the compliance with the

NSI v2.0 standard.

Table 2.3: Steps to collect the results for a test

2.1.3 Continuing tests

The NSI developer can execute a sequence of different tests in a single or different sessions. The

workflow for the single test execution is the same specified in section 2.1.1. The workflows is

represented in Figure 2.3 and Table 2.4.

NSI protocol test scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

7

Figure 2.3: Workflow to continue tests

Step Description

Step 1 The NSI developer logins to the NSI CTS portal.

Step 2 The NSI developer decides to start a new testing session, or continue the previous one (e.g. to

increase the coverage of tests).

Step 3 Start a new session:

The NSI-CTS clears the testing session. The

user proceeds with a selection of pre-

defined tests from the portal.

Continuation of a previous session:

The user selects new tests to be performed and

continues with testing.

Table 2.4: Steps to continue tests

2.2 Testing Requester role

A scenario which tests a Requester NSA is used to validate an NSI client application and involves two

entities, as shown in Figure 2.4:

 The NSI DUT which acts as the ultimate Requester NSA

 An instance of the NSI Reference Implementation (NSI-RI) which acts as a generic Provider NSA.

In particular, this NSI RI instance could either represent the ultimate provider or an aggregator,

thus hiding all the complexity of an inter-domain topology (e.g. the generation of errors

related to remote domains).

NSI protocol test scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

8

Figure 2.4: Scenario to test a Requester Agent

This type of test is initiated by the DUT which sends a set of NSI request messages. The NSI-CTS does

not trigger the requester, but it may provide the user with guidance about how to proceed according

to the test definition. In order to evaluate the DUT behavior, the NSI CTS collects the messages sent

by the DUT requester and validates them according to the test template and configuration through

the NSI-RI. In particular, the NSI-RI instance performs the following three actions:

1. Validation of the formatting of the received request messages.

2. Validation of the sequence of the received messages according to the NSI FSMs and

verification of their contents and parameters according to the test configuration.

3. Generation of events and messages, compliant with the NSI FSMs, according to the

configuration specified by the user.

2.3 Testing Provider role

A scenario which tests an ultimate Provider NSA is used to validate an NSA which manages a single

domain. As in the previous case, it involves only two entities (Figure 2.5):

 The NSI DUT which acts as the ultimate Provider NSA

 An instance of the NSI Reference Implementation (NSI-RI) which acts as a generic Requester

NSA. This NSI RI instance could either represent the ultimate requester or an aggregator that

hides all the chain of previous domains.

Figure 2.5: Scenario to test a Provider Agent

NSI protocol test scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

9

The NSI CTS starts the test triggering the NSI-RI which represents the Requester agent. The NSI-RI

generates the messages according to the test scenario selected by the user (e.g. a full reservation cycle

with reserve, reserveCommit and provision phases). The user needs also to specify some additional

service parameters in the configuration, for example the service URL, the provider NSA, or the pair of

termination points (STPs). As further option, some of these parameters may be also retrieved

automatically from the topology service. However, this would require a standard mechanism and

protocol to advertise and exchange topology information.

During the test execution, the NSI-RI checks the formatting of the NSI messages received from the

DUT and validate the sequence and the content of the messages according to the NSI FSMs and the

expected evolution of the NSI session, as declared in the test description provided by the user.

2.4 Testing Aggregator role

The aggregator role scenario is adopted in multi-domain environments, where the DUT provides the

NSI implementation for a domain in the middle of the topology. In general, both chains and tree

topology structures are supported. However, it is a task of the user to provide the list of the domains

involved in the connection service and the list of the domains which will be contacted by the

aggregator.

The entities involved in the aggregator role scenarios are shown in Figure 2.6.

Figure 2.6: Scenario to test an Aggregator Agent

The NSI DUT acts as Aggregator Agent and receives NSI request messages from an NSI-RI instance with

the role of the Requester Agent. This single instance may represent the ultimate Requester or another

intermediate Aggregator which invokes the DUT. Depending on the scenario configuration, one or

NSI protocol test scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

10

more NSI-RI instances with the role of Provider Agents must be deployed to simulate the provisioning

of the network resources and the responses to the NSI requests generated by the DUT. Each NSI-RI

with the Provider Agent role may represent an ultimate provider or another aggregator, hiding the

entire chain of the following agents. The behaviour of each NSI-RI can be configured individually, e.g.

in terms of NRM processing delay, resource availability, generation of error messages. This approach

allows to emulate the behaviour of complex environments through the simple configuration of a

limited number of NSI-RIs, independently on the real dimension of the desired topology.

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

11

3 NSI Compliance Testing Suite System
Architecture

The NSI Compliance Testing Suite provides an online service which can be used by NSI software

developers to verify the conformance of their NSI Agent implementation to the protocol standard of

the NSI Connection Service v2.0. As shown in Figure 3.1, the NSI CTS offers a web interface where the

user can register to the NSI-CONTEST service, request and configure a new test session, start the

execution of the test and collect the final results. The CTS platform supports two types of user

interfaces: (i) a Graphical User Interface (GUI) through a web portal which can be accessed through a

common web browser and (ii) a RESTful API which can be used to automate all the procedures for test

creation, configuration and execution.

Figure 3.1: NSI CS v2.0 Compliance Test Suite

The NSI developer can use the NSI CTS interface to select the desired test template from the pre-

defined set of requester, provider or aggregator roles (see sections 2.2 - 2.4) and to configure a set of

parameters which define a customized testing scenario. The NSI CTS platform is responsible to deliver

on-demand an isolated testing environment with a number of NSI-RI instances deployed and

configured according to the specification provided in the user request. When a test is executed, the

NSI Agent under test exchanges NSI protocol messages with the NSI-RI instances of the related testing

environment. These distributed NSI-RI instances are responsible to analyse the incoming traffic, react

in compliance with the FSMs defined in the NSI specification and according to the workflow configured

by the user in the test descriptor, verify the correct format of the received messages and their

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

12

compliance with the logical evolution of the NSI session. The local test results generated in each NSI-

RI instance are stored internally and forwarded to a centralized collector where they are combined to

compile the final test result.

Figure 3.2: High-level architecture

The interaction between the centralized core engine backend in the NSI CTS and the distributed NSI-

RI instances is shown in Figure 3.2. The test description (Test spec) specified by the NSI developer in

the web portal through the test template and its configurable parameters are elaborated in the test

coordinator. This module builds the local test descriptors which constitute the configuration input for

the distributed NSI-RI instances and coordinates the execution of the whole test. The interaction

between test coordinator and NSI-RI instances is based on a RESTful interface (see section 3.2.1) and

it is mediated through an entity called Local Test Runner. It is responsible to manage the local test

execution in each NSI-RI node, configuring the behaviour of the mock NRM that emulates resource

allocation in the related network domain, triggering the actions in the NSI protocol stacks and

collecting the distributed test results. These preliminary results are stored internally and made

available through the REST API, but are also forwarded to a RabbitMQ in the NSI CTS core engine.

Finally, based on this distributed information, the test coordinator generates a consolidated test result,

which can be retrieved by the user through a RESTful interface or visualized in the web portal.

3.1 NSI CTS Web Portal

The front end for the NSI-CONTEST platform is a web portal that manage users, test scenarios and

coordinates the execution of tests in order to validate the systems under test. There are two web

interfaces for the users exposed by the system: web GUI and REST API. The first one is dedicated to

the human users while the latter one is for automatic systems (e.g. user external scripts).

The web GUI interface is designed for both external users and the NSI-CONTEST service administrators.

The administrative panel is intended to provide an overview of running tests, resource utilization and

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

13

allows to manage projects and users. In this section administrators are able to define templates for

test scenarios and set the certification test cases.

The User section is focused on project and test execution. The users are able to provide in the system

new projects that represent single working instances of the user SUT. The project configuration consist

of some initial data (like type of user agent) and topology information exchange for testing scenarios.

System generates basic topology for agents that has to be updated within the user agent and the user

has to provide its own configuration in order to complete the testing topology. In order to start testing,

the user is able to define custom or certification test case that is a set of (pre)selected test scenarios

that are executed by the NSI-CONTEST platform to validate the user agent compliance with the NSI CS

v2.0 protocol. The user is responsible to provide running instance of its own SUT before starting the

testing process and it has to be running during the whole procedure. It means that tests are executed

in the given order and the user NSI agent has to be able to handle all the tests without restarting user

SUT between them.

To simplify the manual execution of test cases in the web GUI user is also able to utilize a REST API

interface (section 3.1.1) that is intended to automate the repeating actions in order to run testing

procedures. For example using custom scripts the user may start the SUT instance, run tests and

provide the results in Jenkins.

Figure 3.3: NSI CTS web portal – Login and registration page

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

14

Figure 3.4: NSI CTS web portal – test results

3.1.1 CTS REST interface

As an alternative for the web GUI interface, which is basically designed for human users, the NSI-CTS

offers a REST API interface that allows to manage and control tests and test cases in an automatic way.

Through this approach it is possible to integrate the NSI-CTS with external applications (e.g. user

scripts) that run specific tests against the user NSI agent implementation.

The REST APIs are described in details in Appendix B and they contain the definitions of methods for

running test cases with selected tests or running certification process. There is also a set of query

methods for retrieving and following the execution of test cases.

3.2 NSI Reference Implementation and Local Test Runner

In the NSI-CTS framework, each test environment is dynamically deployed with a number of NSI nodes

running a reference implementation of the NSI CS v2.0 protocol. These nodes are instantiated on

demand to create the topology specified by the user and their actions and configuration are managed

via REST APIs by the Test Coordinator located in the CTS core engine.

Figure 3.5: NSI-RI and local test runner

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

15

Each reference NSI node, as depicted in Figure 3.5, exchanges NSI messages with the other NSI Agents

of the test environment, including the NSI Agent developed by the user. Moreover, when acting as a

general Provider Agent, it also runs an emulated NRM with a customizable behaviour. Table 3.1 lists

the different software components of a reference NSI node.

Component Description

Local Test

Runner

A software module written in java language, using the Spring framework [Spring], which

manages the test lifecycle and execution in each NSI-RI node, allocating in a dynamic way

new instances of the NSI-RI stack and interacting with them. It exposes a REST API to

receive configuration and action commands or informative requests from the centralized

NSI CTS backend. On its southbound, it interacts with the NRM for configuration issues and

with the NSI-RI to trigger NSI actions. It also intercepts the NSI messages received at the

NSI-RI to validate their compliance with the test description and elaborate the local test

results which are stored in the database.

Test Results

DB

A local HSQL database (HSQLDB [HSQLDB]) used to store the partial results of the test, with

details on the actions performed on the local NSI node, the type of messages received from

the remote nodes and the errors detected during the test execution.

This built-in database is mainly used to temporarily store all the metadata of the NSI-RI

instanced launched and terminated in the past, but it is normally wiped clean and recreated

at every launch of the Local Test Runner web service, erasing all previous history. However,

this behaviour is configurable in case the history of the runs needs to be preserved across

multiple stop and restart cycles of the REST web service.

NSI-RI A software module written in java language which provides the implementation of the NSI-

CS v2.0 [NSI-CS-2.0] protocol stack. It includes the functionalities for parsing and formatting

of the NSI SOAP messages and for the management of the three FSMs defined by the

protocol, i.e. the Reservation State Machine (RSM), the Provision State Machine (PSM) and

the Lifecycle State Machine (LSM). It offers java interfaces to trigger NSI actions, like the

generation and forwarding of NSI messages and the initiation and management of NSI

sessions. The original NSI implementation has been extended with enhanced logging

capabilities to detect errors and monitor the different steps in a test execution.

Mock NRM A software module integrated with the NSI-RI component to emulate the behaviour of the

network resource allocation for a Provider Agent. It can be configured to emulate different

conditions, including failures or delays in the connection provisioning for the associated

domain.

Table 3.1: NSI-RI components

3.2.1 Test Runner REST interface

The interaction between the centralized NSI CTS core engine and the distributed NSI-RI instance is

handled by the Local Test Runner module, which implements an web server to offer REST APIs. The

content of the HTTP messages is formatted following the json language, where test description is

specified with XML strings.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

16

Table 3.2: Test Runner REST API

Table 3.2 lists the two operations available on the Test Runner REST API, while the format and

parameters of the request and reply messages are specified in Table 3.3 and Table 3.4.

POST /job

Body of HTTP request:

{

 "requesterId": "your_name",

 "xmlData": "... xml data ..."

}

Body of HTTP response:

{

 "id": "... some UUID ...",

 "status": "... some status

value ...",

 "error": "... some error msg ..."

}

Parameter Type Description

requesterId String The identifier of the requester

xmlData String with XML data The local test descriptor, with the specification of the

configuration parameters and the desired NSI session

evolution (i.e. specification of NSI messages to be sent

or received). Some examples of test descriptor are

provided in appendix.

Id String The unique identifier of the test. It is an uuid value

which can be used by the requester in the following

requests to track the execution of the tasked job. It is

generated by the REST web service engine upon

instantiation of a new test, and never reused.

Status Enum The status of the test. It can assume the following

values:

 QUEUED - job accepted and put in the execution

queue, but not yet processed;

 STARTED - an NSI-RI has been instantiated and

possibly started, but the test scenario execution

has yet to complete;

Operation URI Description

POST /job This operation requests the configuration and execution of a new test with

a given local test description.

GET /job/{jobID} This operation returns the status of an existing test and, if completed, its

report.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

17

 ABORTED_ERROR - a major error (due to

configuration or other conflict) has occurred. This

should normally not happen;

 COMPLETED_OK - the test scenario execution has

completed, the test went through all it stages

successfully. The NSI-RI instance is no longer alive

and its resources have been collected. A test report

XML is available for retrieval.

 COMPLETED_ERROR - the test scenario execution

has completed, the test did not go through all it

stages due to unexpected error. The NSI-RI instance

is no longer alive and its resources have been

collected. A test report XML is available for

retrieval.

Error String A human readable message to describe the occurred

error.

Table 3.3: Test Runner REST API: “POST /job”

GET /job/{jobID}

-- Body of HTTP response:

{

 "id": "{jobId}",

 "status": "… some status value …",

 "testReport": null

}

Parameter Type Description

Id String The unique identifier of the test, generated by the REST

web service engine upon instantiation of a new test

and returned in the response of the POST operation.

Status Enum The status of the test. It can assume the same values of

the POST response, plus the following additional one:

 NOT_FOUND - the specified jobID does not

match any known job instance.

testReport String with XML data A string containing the XML data of the output test

report from the NSI-RI. This string will be populated

only after the "status" reaches COMPLETED_OK or

COMPLETED_ERROR.

Table 3.4: Test Runner REST API: “GET /job/{jobID}”

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

18

The following pictures shows an example of local test descriptor in XML format for a test scenario

involving a SUT as Provider (Figure 3.6) and a test scenario involving a SUT as Requester (Figure 3.7).

The scenario specification includes three main elements:

 Description: it provides a textual description of the test scenario

 Configuration: it provides the configuration of the testing environment and the involved NSA

instances (e.g. listening port, STPs, NSA identifiers)

 Section: it describes the desired evolution of the NSI session through an ordered sequence of

operations. Each operation may indicate:

a. an action (i.e. send a specific NSI message) with the specification of the expected reaction

from the SUT; in this case the operation “name” element reflects the name of the NSI

message to be sent, e.g. “reserve”, while the “expected” element indicates which message

is expected from the SUT. This type of operation is used to describe scenarios for Provider

SUTs, where the NSI-RI is the entity which triggers the NSI requests.

b. a passive behaviour to wait for an action from the SUT (i.e. wait to receive a specific NSI

message); in this case the operation name element is “listen”, while the “expected”

element still indicates which message is expected from the SUT. This type of operation is

used to describe scenarios for Requester SUTs, where the NSI message exchange is

initiated by the SUT itself.

The NSI compliance validation is performed checking if a valid message is received from the SUT within

the specified time interval and if the received messages correspond to the expected one. A simple

check is based just on the message type (e.g. reserve, reserveCommit, etc.), but the test descriptor

may also specify further parameters that need to be matched in the message body. This option is

enabled through the “match” element of the operation statement, as shown in grey in Figure 3.7.

Figure 3.6: Example of local test descriptor for a Provider SUT

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

19

Figure 3.7: Example of local test descriptor for a Requester SUT

Examples of test report are show below, with a successful test report (Figure 3.8) and a failed test

report (Figure 3.9). For each operation, the test report specifies the result with a boolean value in the

“success” element and the received event (i.e. the received NSI message).

Figure 3.8: Test report for a successful result

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

20

Figure 3.9: Test report for a failed result

3.3 NSI-CTS platform workflows

This section presents in details the workflows and the message exchanges between the different

components of the NSI-CTS platform and the SUT when testing the different NSI Agent roles described

in sections 2.2, 2.3, and 2.4 (i.e. requester, provider and aggregator roles).

Figure 3.10: Topology exchange

In order to perform a generic User NSA – NSI RI test, topology exchange must occur:

 Each NSA must be aware of other NSAs topology

 Prior to launching test scenarios, user must provide his topology and indicate peering links

towards NSI-RIs

 CTS will generate topologies for user and NSI-RIs

Since the way topologies are exchanged is not yet defined in the NSI standard, in the NSI CTS we use

a topology repository where topology information is stored (see Figure 3.10).

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

21

Independently on the specific NSA role under test, a testing session starts with three common steps,

as follows:

1. The user logs into CTS and selects role he/she wants to test (Requester, Provider, Aggregator).

Role determines number of NSI-RI instances.

2. The user is asked to prepare his/her topology with peering links towards NSI-RI and upload it

to the Topology repository. The CTS validates the topology and generates topologies for the

NSI-RI instances, placing them in the repository. The CTS instantiates and preconfigures the

NSI-RI instances with specific settings (port, providerNSA, topology).

3. The CTS informs the user about NSI-RI topologies availability and encourages to launch tests.

The following pictures and tables describe the procedures specific for each NSA role.

Provider workflow (Figure 3.11)

Figure 3.11: Provider workflow

Step Description

Step 1 The user orders the NSI CTS to run a test through the web portal.

Step 2 The CTS submits the selected test to the Test Runner on the NSI-RI instance.

Step 3 The NSI-RI instance sends NSI messages based on requested test to the User NSA (SUT).

Step 4 The User NSA (SUT) is expected to respond to the NSI-RI instance.

Step 5 The NSI-RI instance analyses the NSI message response and sends results to the RabbitMQ

through the Test Runner.

Step 6 The CTS receives notifications of the test results and presents it to the user.

Step 7 The user can view the test results.

Table 3.5: Workflow to test a Provider NSA

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

22

Requester workflow (Figure 3.12)

Figure 3.12: Requester workflow

Table 3.6: Workflow to test a Requester NSA

Step Description

Step 1 The user orders the NSI CTS to run a test through the web portal.

Step 2 The CTS submits the selected test to the Test Runner on the NSI-RI instance.

Step 3 The NSI-RI instance sends a confirmation to the RabbitMQ – it is ready to receive NSI messages.

Step 4 The RabbitMQ notifies CTS about the NSI-RI instance readiness.

Step 5 The CTS instructs the user to send NSI messages with his/her NSI Agent.

Step 6 The user triggers his/her NSA to send an NSI message destined to NSI-RI.

Step 7 The user NSA delivers a message to the NSI-RI instance.

Step 8 The NSI-RI instance receives the NSI message from the user NSA, validates it and responds to

user NSA.

Step 9 The NSI-RI instance also puts results on the RabbitMQ.

Step 10 The RabbitMQ delivers the results to the CTS.

Step 11 The CTS presents the test result to the user.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

23

Aggregator workflow (Figure 3.13)

Figure 3.13: Aggregator workflow

Table 3.7: Workflow to test an Aggregator NSA

Step Description

Step 1 The user orders the NSI CTS to perform a multi-domain test through the web portal.

Step 2 The CTS uploads test on NSI-RI-A (same step for NSI-RI-B and NSI-RI-C).

Step 3 The NSI-RI-A sends a multi-domain request to the user NSA, also keeps message queue

informed (not shown to keep the picture clean, in general every time NSI-RI receives or

sends a message, it also make RabbitMQ aware of this fact).

Step 4 The User NSA (SUT) is expected to send a correct NSI message to NSI-RI-B.

Step 5 The NSI-RI-B analyzes the NSI message from the user NSA for correctness and checks if it

meets test requirements. If Explicit Route Object is involved, request is passed to NSI-RI-

C, otherwise response is dispatched to the user NSA.

Step 6 Response from NSI-RI-C to NSI-RI-B if testing for ERO.

Step 7 The NSI-RI-B sends a reply to the user NSA.

Step 8 The user NSA completes its test by responding to NSA-RI-A

Step 9 The NSA-RI-A puts the final test results on the RabbitMQ.

Step 10 The CTS is notified about the results and presents them to the user.

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

24

4 NSI CTS Prototype

The software prototype of the NSI CTS is released in a Virtual Machine (VM) where all the software

packages which compose the centralized NSI CTS core engine, including the web portal, and the

distributed NSI-RI nodes have been already installed and configured for a sample environment. This

section describes the VM structure (section 4.1) and provides some guidelines for the configuration

of the different components (section 4.2). Finally, section 4.3 describe how to create a new test using

the web portal.

4.1 Software release

The NSI CTS software components are released as a single VM “NSI-CONTEST-v1.0”, which can be

downloaded at the following link:

https://box.psnc.pl/f/23decf778d/

The virtual appliance image is an Ubuntu 14.04.2 LTS based distribution, equipped with all the

software packages required to run the NSI CTS components. The following list presents the main

libraries and programs installed in the VM:

 Java JDK 1.7

 Maven (and related dependencies)

 Ant

 Python and python-pika

 RabbitMQ server

 Postgresql

 Apache Tomcat 7+

 Groovy Gradle 2+

The VM image, exported as OVA file, can be imported into any OVA compliant virtualization tools (e.g.

VMWare Player or Oracle VirtualBox). When up and running, the VM can be accessed through a

https://box.psnc.pl/f/23decf778d/

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

25

remote desktop client and it is configured so that it does not require credentials. Username and

password to access directly the VM are:

Username: nextworks

Password: nextworks

The VM is structured in a set of folders located in /home/nextworks directory, where the different

software modules and configuration files are installed, as detailed in Table 4.1.

Table 4.1: NSI CTS: VM structure

4.2 Installation and configuration guide

The VM is provided with a basic configuration that allows to run the different components of the NSI-

CTS platform in a simple environment. The ports defined in the start-up configuration are the following:

Component Port

CTS web portal 12080

Local Test Runner (REST API) 12090

NSI-RI 12190

SUT (NSI) 12191

Table 4.2: NSI CTS: ports used in the start-up configuration

Folder Description

apache-tomcat-7.0.57 The Tomcat web container to run the centralized NSI CTS core engine and web

portal (see section 3.1). The .war package is deployed in the webapps/ROOT

folder.

nsi-ri Folder with the source code, the binary files and zip archive of the NSI-RI and

mock NRM components (see section 3.2). The zip archive is used by the Local

Test Runner to dynamically instantiate the local reference NSA instances.

test-runner Folder with the source code and the binary files of the Local Test Runner

component (see section 3.2).

Sut A sample SUT NSI implementation for testing and demonstration purposes.

Conf Folder with sample configuration files of the NSI-CTS web portal, the Local Test

Runner and the sample SUT NSI implementation.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

26

The user can modify this basic configuration provided in the VM, as described in the following

subsections.

4.2.1 CTS configuration

The sample configuration files for the CTS are located in /home/nextworks/conf/nsi-cts folder. The

general configuration of the CTS must be specified in the cts.properties file, where the user can specify

the credentials of the administrator, some default values for the profile of new users, timers for

maximum test duration and frequency of polling for results requests and the url where the Test

Runner APIs can be invoked. The log4j.properties file is used to specify logging options, like the logging

level and the location of the log file. Finally, the db.properties file specifies the database used by the

CTS portal. In the start-up configuration, the portal uses a postgresql database, which has been already

created in the VM. In a different environment, this database can be created with the following

commands:

sudo postgres

psql

-> create user 'cts' with createdb password 'cts';

createdb -U cts -W -h localhost cts

The example database user and password can be changed and have to be updated in db.properties

file.

cts.propertis – NSI-CTS application configuration

Property name Description

admin.email Admin user that is created when CTS is created for the first time when empty

database is initialized.

Default: admin@localhost

admin.password Admin password that is assigned when the admin user is created during

initialization.

Default: nsicts

Please change this value before deploying CTS.

user.role.default This is default role that is assigned to any new registered user. Available roles:

ROLE_USER, ROLE_ADMIN. This value should be set to default one.

Default: ROLE_USER

https.enabled Enable https transport. If true all communication with CTS will be redirected to

https.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

27

Property name Description

Default: false

topology.location Directory where topology files are stored.

topology.maxFileSize Maximum size of uploaded topology.

Default: 1MB

tests.timeout Maximum time (in sec.) that single test can run. After exceeding timeout test is

rejected and failed.

Default: 300

testRunner.url Url to TestRunner component.

Table 4.3: NSI CTS configuration parameters

db.properties – Database configuration

This file offer to customize database settings. In order to use specific type of DB it is required to install

in WEB-INF/lib appropriate database connector (JDBC driver), e.g.:

 PostgreSQL - https://jdbc.postgresql.org/download.html

 MySQL - http://dev.mysql.com/downloads/connector/j/

For testing purposes it is possible to use build in in-memory database H2

(http://www.h2database.com). However in this case all the stored data will be lost after stopping or

restarting NSI-CTS service.

Table 4.4: NSI CTS database configuration parameters

Property name Description

database.driver Class name for database driver.

database.url Url to CTS database.

database.username Username for CTS database.

database.password Password for CTS database.

hibernate.dialect Class name for Hibernate dialect for specific database (driver)

hibernate.show_sql Logs SQL statements. Default: false

hibernate.hbm2ddl.auto Strategy for updating or creating new database whenever service is started.

Please do not modify this value. Default: update

https://jdbc.postgresql.org/download.html
http://dev.mysql.com/downloads/connector/j/
http://www.h2database.com/

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

28

Example configuration for PostgreSQL:

Postgres

database.driver=org.postgresql.Driver

database.url=jdbc:postgresql://localhost:5432/cts

database.username=cts

database.password=cts

hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

hibernate.show_sql=false

hibernate.hbm2ddl.auto=update

Example configuration for PostgreSQL:

MySQL

database.driver=com.mysql.jdbc.Driver

database.url=jdbc:mysql://localhost:3306/cts

database.username=cts

database.password=cts

hibernate.dialect=org.hibernate.dialect.MySQL5Dialect

hibernate.show_sql=false

hibernate.hbm2ddl.auto=update

Example configuration for H2:

H2

database.driver=org.h2.Driver

database.url=jdbc:h2:mem:ctsTest

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

29

database.username=

database.password=

hibernate.dialect=org.hibernate.dialect.H2Dialect

hibernate.show_sql=false

hibernate.hbm2ddl.auto=update

log4j.properties – Logging facility

Configuration of NSI-CTS allows to customize logging strategy. User should define appropriate level of

logging information and location of output files. More details are available in the Log4J documentation

- http://logging.apache.org/log4j/1.2/ and it is out of the scope of this deliverable

4.2.2 Local Test Runner configuration

The sample configuration file (application.properties) for the Local Test Runner is located in

/home/nextworks/conf/test-runner folder. In order to change the REST listen HTTP port, the user can

add the following line:

server.port = NNNN

where NNNN should be over 1024 to allow the Test Runner being run as non-root.

The Local Test Runner includes a built-in HSQL database which is used to temporarily store all the

metadata of the NSI-RI instanced launched and terminated in the past. This database, normally, is

wiped clean and recreated at every launch of the web service, erasing all previous history. In case the

history of the runs is to be preserved across multiple stop and restart cycles of the REST web service,

the following line should be added in the application.properties file:

spring.jpa.hibernate.ddl-auto=update

The Local Test Runner starts and manages NSI-RI instances by allocating them dynamically. Each time

an NSI-RI run is requested, an NSI-RI engine is copied over a temporary directory and run from there.

The NSI-RI serving as the template for instantiation of other instances must be provided to the Local

Test Runner engine whilst contained in a zip file. The ZIP file shall contain a recursive archive of a

complete (able to run) NSI-RI instance. The "startConsole.sh" script is run to execute the NSI-RI

instance. The engine normally checks for the existence of the file in ../nsi-ri/nsi.zip. This can be

overridden in the application.properties file, adding the line:

nsi-ri-runner.zipFilePath=path/to/nsi.zip

http://logging.apache.org/log4j/1.2/

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

30

4.3 User guide

The NSI CTS platform can be started with the following procedure:

1. Start the SUT (only in case of demonstration scenarios):

 # cd ~/sut

 # ./start.sh

2. Start the Local Test Runner:

 # cd ~/test-runner

 # ./start.sh

3. Start the CTS core engine:

 # cd ~/apache-tomcat-7.0.57/bin

 # ./startup.sh

On the VM desktop the user can also find three icons with shortcuts to automatically start the different

components. When the system is up and running, the CTS web portal (see Figure 4.1) can be accessed

from a browser at the url: http://<ip-address>:12080. The admin user can access the portal with the

following credentials (configurable as explained in section 4.2.1):

username: admin@localhost

password: nsicts

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

31

Figure 4.1: CTS web portal main page

User and project registration

The NSI CTS requires user registration in order to start using platform. This also helps to manage

individual tests and project. The CTS welcome page (Figure 4.1) provides user registration and project

registration/join form that allows to provide the minimum required information to start using whole

platform.

During the registration process, the user is able register a new project but he or she is also able to join

an existing one by providing its project id (key), created previously by someone else (e.g. from the

same development team). This option can also be skipped and a project can be created or joined later

after logging in to the platform.

Configuring project

A project represents a single running instance of the user agent that is executed on the user side. For

the configuration process the user has to provide some information before start running test. In

particular, there are two sections: the former with basic details to be updated after the project

registration, the latter is a configuration section to declare the testing topology that will be used in

future for all test cases (Figure 4.2).

Initially the user has to generate the testing topology for agent and then download the created files

to update user agent topology with the corresponding links/connections to the testing topology. After

that, the user has to upload its own user agent domain topology to the CTS. The web GUI provides the

summary of the interconnections (links) between the domains represented by all agents. This feature

allows to find out any inconsistent entries that may cause issues later during testing.

Notice! Clicking on topology may cause that browser open instead of download xml file that is further

interpreted and viewed within the browser. In this case it might be necessary to view the source of

the open xml file.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

32

Figure 4.2: Project topology configuration

Running test cases

Creating a new test case requires selection of test predefined scenarios (Figure 4.3) that will be

executed by the platform to validate the user NSI agent as a system under test. As each test is

independent from any other the execution of all tests within single test case should be independent

and user software should not assume any order of the executed tests. In case of running certification

tests the list of selected test scenarios is fixed and cannot be changed by the user. Only CTS

administrator is allowed to update the certification tests for each agent type but it will affect all

projects. However the certification process simplify testing compliance with the NSI protocol for the

given agent type.

After starting a new custom or certification test cases user is able to monitor and view the results for

each individual executed scenario by clicking on test cases and further on their tests (Figure 4.4).

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

33

Figure 4.3: Project test cases

Figure 4.4: Single test results

Administration panel

The administration panel (Figure 4.5) is a section of the portal that provides overview and

management of users, projects and running tests. The administrator is also responsible for defining

common testing scenario templates that should be prepared according to the assumptions of the

testing topologies.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

34

Figure 4.5: CTS administration panel - overview

Creating or editing testing scenario templates consist of several information (Figure 4.6). Except the

name it is important to select the NSA agent type for the defined scenario – REQUESTER, PROVIDER

or AGGREGATOR. In case of adding scenario to the certification process for compliance with NSI v2

protocol “For certificate” should be selected. Changing this parameter it will cause an update for

future certification test cases only.

Figure 4.6: Test scenario template form

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

35

1.1.2 SUT configuration and CLI commands for demonstration

The VM includes a sample NSI implementation which can be used to emulate a SUT for demonstration

purposes. This software is installed in ~/sut folder and the configuration files are available in

~/sut/etc folder. Logging parameters can be configured in the log4j.properties file, while

the NSI stack configuration is located in the nsi.properties file. This file is organized in a key-

value fashion, meaning that only values can be altered. The configuration can be reloaded at any time

with the “reload” command available in the CLI. The configuration parameters available for the SUT

are listed in Table 4.5.

Property name Description

ip ip address in either canonical or domain form. "localhost" or "127.0.0.1" can
be assigned. If this instance is to be accessible from Internet, an ip address
assigned to an interface on deployment machine should be set

port [1024-65535] port number on which this instance will listen on

nsa_id literal with identifier of this instance. The value of this property is internally
used as providerNSA field in CommonHeaderType. Also it determines
ownership of topology (topology with nsaId that matches this entry will be
assigned to this instance)

service_type describes what type of requests are supported by this NSI-RI. This should
always be http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-GOLE

reserve_held_timeo
ut

[0-360] number of seconds reservation in state HELD will wait for either
commit or abort message

fail_if_response_no
t_

delivered

[true | false] true to fail operation in case asynchronous response could not
be delivered. False to proceed to next state despite confirmation/failure
message not being delivered

set_ero [true | false] true to always set ERO in reserve requests. This only works for
multi-domain requests

requester_timeout [0-360] number of seconds requester will be awaiting asynchronous
response before timing out

log_header [true | false] true to log common header verification output

log_soap_messages [true | false] true to capture soap messages and write them to a file

log_responder [true | false] true to log responder output. Responder sends
confirmation/failure and notification messages

num_threads [0-1024] size of internal thread pool where task jobs are submitted. Higher
value allows more requests to be processed simultaneously

nrm literal with fully qualified name of the class implementing the Nrm interface.
If not set default SimpleNrm implementation will be used

topologies comma separated file names. These files should be of nml/nsi topology type
that will be added NSI-RI global topology

http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-GOLE

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

36

Property name Description

cli [true | false] true to enable command line running in foreground (if you
logout instance will be shut down), or false to run in background

telnet_port [0 | 1024-65535] port number for accepting telnet connections. 0 disables
telnet server

Table 4.5: SUT configuration parameters

The NSI stack of the sample SUT implementation is supplied with a Command Line Interface (CLI) that

can be used to inspect the current state of the NSI reservations, make new NSI requests, and perform

topology and nrm management. The CLI can be accessed in two ways:

 as a regular CLI available once the SUT is initialized. This can be enabled by setting the cli

property of nsi.properties to true.

 as a regular CLI available by connecting with telnet client. This can be enabled by setting the

telnet_port property of nsi.properties to a number from 1024-65535 range. Note that only

localhost connections are allowed (if you connect from a different host it will be rejected).

The SUT CLI supports five main categories of commands:

 Utility: allows to reload configuration, show command line help or close NSI-RI

 Provider: allows to interact with internal reservations directly (with omission of web service

stack). This type of commands always start with the "provider" or "prov" word

 Requester: allows to interact with Requester (Provider client). This command can be used to

send soap requests to self or other domains. Taking into consideration a large number of

parameters required for reserve operation, instead of typing them all, they are read from

/etc/request.properties file. This type of commands always start with the "requester" or "req"

word

 Topology: user can view global topology (topologies uploaded to his NSI-RI) as well add new

topologies from file (must be in nsi/nml format). This type of commands always start with the

"topology" or "topo" word

 Nrm: mainly used to export nrm topology into nsi/nml topology file. This type of commands

always start with the "nrm" word.

The full list of CLI commands are shown in Table 4.6

Command category Commands Description

Utility Exit | Quit Exits application

Reload Reloads configuration

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

37

Command category Commands Description

Help Prints help info

Requester All Displays all requesters connectionId

New Creates a new requester

Reserve Sends a reserve message

Modify [connectionID] Sends a modify message

Commit [connectionID] Sends a commit message

Abort [connectionID] Sends a reserveAbort message

Provision [connectionID] Sends a provision message

Release [connectionID] Sends a release message

Terminate [connectionID] Sends a terminate message

Query [connectionID] Sends a query message

Queryall | qall [connectionId] Sends query message to retrieve all
reservations

Querysync | qsync [connectionId] Calls querySync

Queryrec | qrec [connectionId] Calls query recursive

Querynot | qnot Calls query notification

Topology All Prints all topologies

This Prints nsaId assigned to the current
agent

Clear Removes all topologies

Add [filename] Adds topology from filename

Nrm Topology Calls getTopology on the provided
NRM implementation and saves it in
NML format

New Re-create the NRM

Impl Display the NRM implementation
name

Table 4.6: SUT CLI commands

A new requester can be created and used for sending NSI Connection Service v2 SOAP messages from

the CLI. However, given the large number of parameters in a typical reserve operation, they can be

specified in a configuration file of the reservation parameters (/etc/request.properties). It

is a key-value text file that is read every time the reserve operation is called, meaning it can be altered

between reserve(modify) calls.

NSI Compliance Testing Suite System Architecture

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

38

Property name Description

endpoint url where requests will be sent. Endpoints can be found in topology as <nsi:link>

provider_nsa nsaId of receiving agent. This can be found in topology as <nsi:NSA id>

reply_to url where asynchronous responses from remote Provider should be sent. This
should be the Requester service url of this agent, a combination of ip and port
values from nsi.properties - http://ip:port/nsicontest/ConnectionRequester

requester_nsa nsaId of agent sending requests. Should equal to <nsi:NSA id> associated with this
Requester

reservation_id optional reservation identifier

description literal with optional description of reservation

start_time reservation start time in seconds, blank for immediate start

end_time reservation end time in seconds, blank for infinite reservation

version a nonnegative number with initial connection version

service_type literal with requested service type. Only
http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-GOLE is supported

source_stp source STP (optionally with vlans)

dest_stp destination STP (optionally with vlans)

ero even number of STPs that requested path should go through

capacity a nonnegative number of requested capacity (bps)

bidirectional [true | false] true if requesting bidirectional path

symmetric_pa
th

[true | false] true if requesting symmetric path

Table 4.7: Reserve request configuration parameters

http://ip:port/nsicontest/ConnectionRequester
http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-GOLE

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

39

5 Conclusions

This report has presented the architecture of the NSI Compliance Testing Suite (NSI-CTS) and the

guidelines to install and use the NSI-CTS software prototype to validate the compliance of NSI

Connection Service v2.0 protocol stack implementations with the standard. This document, together

with the NSI-CTS prototype released in the related Virtual Machine, constitutes the final outcome of

the NSI-CONTEST project.

The prototype has been presented in three demonstrations in the past year, in order to promote the

usage of the NSI-CTS service in the NSI development community. The wide usage of this service has

the potential to evolve the NSI activities towards a standard-driven approach, where the consistency

and the interoperability of different implementations of the NSI protocol stack can be guaranteed

through their validation with the common NSI Reference Implementation provided by the NSI-CTS

platform.

The design and development of the NSI-CTS have been driven by requirements and continuous

feedbacks collected through a strong cooperation with the OGF NSI-WG. A preliminary demonstration

of the NSI-CTS concepts has been held during a conference call of the NSI team in September 2014,

where the NSI developers have provided suggestions about improvements and new features of the

NSI-CTS from the perspective of the final users of the platform. Two further demonstrations have been

held at the SuperComputing conference in New Orleans (US) in November 2014 and at the OGF 43

meeting, held in Washington (US) in March 2015 and co-located with the GENI Engineering Conference

22.

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

40

Appendix A Sample Scenarios

This section provides some examples of test descriptor in XML format.

A.1 Requester scenarios

A.1.1 Single reservation

The following test descriptor allows to validate the procedures implemented in a SUT acting as

Requester agent for a successful reservation with a single provisioning action.

<scenario id="1" peer="ciccio">

 <description>TESTCASE_NAME</description>

 <configuration>

 <!-- nsi_listen_port and reply_to_endpoint must be picked in accord. reply_to_endpoint

point to fully qualified URL reachable from the SUT, whose port bit depends on nsi_listen_port

-->

 <option name="nsi_listen_port" value="9090"></option>

 <option name="reply_to_endpoint"

value="http://127.0.0.1:9090/nsicontest/ConnectionRequester"></option>

 <!-- remote_endpoint points to the Provider port of the SUT -->

 <option name="remote_endpoint"

value="http://127.0.0.1:9091/nsicontest/ConnectionProvider"></option>

 <!-- provider_nsa is the NSA name the SUT is expected to have -->

 <option name="provider_nsa" value="test.provider"></option>

 <!-- requester_nsa is the NSA name the NSI-RI instance will have during the test

scenario execution -->

 <option name="requester_nsa" value="test.requester"></option>

 </configuration>

 <section id="sect1" interval="500">

 <operation id="oper1" name="listen" expected="reserve" >

 <match name="startTime">2014-06-21 15:50:10.000 GMT</match>

 <match name="startTimeMin">2014-06-21 15:50:10.000 GMT</match>

 <match name="startTimeMax">2014-06-21 15:50:10.000 GMT</match>

Sample Scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

41

 <match name="endTime">2014-06-21 15:55:10.000 GMT</match>

 <match name="endTimeMix">2014-06-21 15:55:10.000 GMT</match>

 <match name="endTimeMax">2014-06-21 15:55:10.000 GMT</match>

 <match name="version">0</match>

 <match name="versionMin">0</match>

 <match name="versionMax">0</match>

 <match name="bidirectional">true</match>

 <match name="symmetricPath">true</match>

 <match name="capacity">9600</match>

 <match name="capacityMin">9600</match>

 <match name="capacityMax">9600</match>

 <match

name="requestedDestStp">urn:ogf:network:test.provider:2013:topology:egress?vlan=1000-

2000</match>

 <match

name="requestedSourceStp">urn:ogf:network:test.provider:2013:topology:ingress?vlan=1000-

2000</match>

 <match name="serviceType">http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-

GOLE</match>

 </operation>

 <operation id="oper1" name="listen" expected="reserveCommit">

 </operation>

 <operation id="oper1" name="listen" expected="provision">

 </operation>

 <operation id="oper1" name="listen" expected="release">

 </operation>

 <operation id="oper1" name="listen" expected="terminate">

 </operation>

 </section>

</scenario>

A.2 Provider scenarios

A.2.1 Single reservation

The following test descriptor allows to validate the procedures implemented in a SUT acting as

Provider agent for a successful reservation with a single provisioning action.

<scenario id="1" peer="ciccio">

 <description>TESTCASE_PA_RESERV_OK</description>

Sample Scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

42

 <configuration>

 <!-- nsi_listen_port and reply_to_endpoint must be picked in accord. reply_to_endpoint

point to

 fully qualified URL reachable from the SUT, whose port bit depends on nsi_listen_port

-->

 <option name="nsi_listen_port" value="12190"></option>

 <option name="reply_to_endpoint"

value="http://127.0.0.1:12190/nsicontest/ConnectionRequester"></option>

 <!-- remote_endpoint points to the Provider port of the SUT -->

 <option name="remote_endpoint"

value="http://127.0.0.1:12191/nsicontest/ConnectionProvider"></option>

 <!-- provider_nsa is the NSA name the SUT is expected to have -->

 <option name="provider_nsa" value="test.provider"></option>

 <!-- requester_nsa is the NSA name the NSI-RI instance will have during the test

scenario execution -->

 <option name="requester_nsa" value="test.requester"></option>

 </configuration>

 <section id="sect1" interval="500">

 <operation id="oper1" name="reserve" interval="2500" continueOnError="false"

expected="reserveConfirmed">

 </operation>

 <operation id="oper2" name="reserveCommit" interval="2500"

expected="reserveCommitConfirmed">

 </operation>

 <operation id="oper2" name="provision" interval="2500" expected="provisionConfirmed">

 </operation>

 <operation id="oper2" name="release" interval="2500" expected="releaseConfirmed">

 </operation>

 <operation id="oper2" name="terminate" interval="2500" expected="terminateConfirmed">

 </operation>

 </section>

</scenario>

A.2.2 Single failed reservation

The following test descriptor allows to validate the procedures implemented in a SUT acting as

Provider agent for a failed reservation.

<scenario id="2" peer="ciccio">

 <description>Failed reservation</description>

 <configuration>

 <!-- nsi_listen_port and reply_to_endpoint must be picked in accord. reply_to_endpoint

point to

Sample Scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

43

 fully qualified URL reachable from the SUT, whose port bit depends on nsi_listen_port

-->

 <option name="nsi_listen_port" value="12190"></option>

 <option name="reply_to_endpoint"

value="http://127.0.0.1:12190/nsicontest/ConnectionRequester"></option>

 <!-- remote_endpoint points to the Provider port of the SUT -->

 <option name="remote_endpoint"

value="http://127.0.0.1:12191/nsicontest/ConnectionProvider"></option>

 <!-- provider_nsa is the NSA name the SUT is expected to have -->

 <option name="provider_nsa" value="test.provider"></option>

 <!-- requester_nsa is the NSA name the NSI-RI instance will have during the test

scenario execution -->

 <option name="requester_nsa" value="test.requester"></option>

 </configuration>

 <section id="sect1" interval="500">

 <operation id="oper1" name="reserve" interval="2500" continueOnError="false"

expected="reserveFailed">

 <!-- no parameter is mandatory. Those which are explicitly set here will override

defaults -->

 <parameter name="version">0</parameter>

 <parameter name="bidirectional">true</parameter>

 <parameter name="symmetricPath">true</parameter>

 <parameter name="capacity">1000</parameter>

 <parameter name="requestedDestStp">urn:ogf:network:user:2013:bi-

nonexistent</parameter>

 <parameter name="requestedSourceStp">urn:ogf:network:user:2013:bi-

nonexistent</parameter>

 <parameter

name="serviceType">http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-GOLE</parameter>

 </operation>

 </section>

</scenario>

A.2.3 Reserve abort

The following test descriptor allows to validate the procedures implemented in a SUT acting as

Provider agent which receives a reservation request followed by a reserve abort request.

<scenario id="3" peer="ciccio">

 <description>Successful reserve with abort</description>

 <configuration>

 <!-- nsi_listen_port and reply_to_endpoint must be picked in accord. reply_to_endpoint

point to

Sample Scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

44

 fully qualified URL reachable from the SUT, whose port bit depends on nsi_listen_port

-->

 <option name="nsi_listen_port" value="12190"></option>

 <option name="reply_to_endpoint"

value="http://127.0.0.1:12190/nsicontest/ConnectionRequester"></option>

 <!-- remote_endpoint points to the Provider port of the SUT -->

 <option name="remote_endpoint"

value="http://127.0.0.1:12191/nsicontest/ConnectionProvider"></option>

 <!-- provider_nsa is the NSA name the SUT is expected to have -->

 <option name="provider_nsa" value="test.provider"></option>

 <!-- requester_nsa is the NSA name the NSI-RI instance will have during the test

scenario execution -->

 <option name="requester_nsa" value="test.requester"></option>

 </configuration>

 <section id="sect1" interval="500">

 <operation id="oper1" name="reserve" interval="2500" continueOnError="false"

expected="reserveConfirmed">

 <!-- no parameter is mandatory. Those which are explicitly set here will override

defaults -->

 <parameter name="version">0</parameter>

 <parameter name="bidirectional">true</parameter>

 <parameter name="symmetricPath">true</parameter>

 <parameter name="capacity">1000</parameter>

 <parameter name="requestedDestStp">urn:ogf:network:user:2013:bi-user-

nsa2</parameter>

 <parameter name="requestedSourceStp">urn:ogf:network:user:2013:bi-user-

nsa1</parameter>

 <parameter

name="serviceType">http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-GOLE</parameter>

 </operation>

 <operation id="oper2" name="reserveAbort" interval="2500"

expected="reserveAbortConfirmed">

 <!-- this operation does not support specifying parameters -->

 </operation>

 </section>

</scenario>

A.2.4 Multiple provisions

The following test descriptor allows to validate the procedures implemented in a SUT acting as

Provider agent for multiple provisioning requests within a single reservation.

<scenario id="4" peer="ciccio">

Sample Scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

45

 <description>Multiple provisions</description>

 <configuration>

 <!-- nsi_listen_port and reply_to_endpoint must be picked in accord. reply_to_endpoint

point to

 fully qualified URL reachable from the SUT, whose port bit depends on nsi_listen_port

-->

 <option name="nsi_listen_port" value="12190"></option>

 <option name="reply_to_endpoint"

value="http://127.0.0.1:12190/nsicontest/ConnectionRequester"></option>

 <!-- remote_endpoint points to the Provider port of the SUT -->

 <option name="remote_endpoint"

value="http://127.0.0.1:12191/nsicontest/ConnectionProvider"></option>

 <!-- provider_nsa is the NSA name the SUT is expected to have -->

 <option name="provider_nsa" value="test.provider"></option>

 <!-- requester_nsa is the NSA name the NSI-RI instance will have during the test

scenario execution -->

 <option name="requester_nsa" value="test.requester"></option>

 </configuration>

 <section id="sect1" interval="500">

 <operation id="oper1" name="reserve" interval="2500" continueOnError="false"

expected="reserveConfirmed">

 <!-- no parameter is mandatory. Those which are explicitly set here will override

defaults -->

 <parameter name="version">0</parameter>

 <parameter name="bidirectional">true</parameter>

 <parameter name="symmetricPath">true</parameter>

 <parameter name="capacity">1000</parameter>

 <parameter name="requestedDestStp">urn:ogf:network:user:2013:bi-user-

nsa2</parameter>

 <parameter name="requestedSourceStp">urn:ogf:network:user:2013:bi-user-

nsa1</parameter>

 <parameter

name="serviceType">http://services.ogf.org/nsi/2013/07/descriptions/EVTS.A-GOLE</parameter>

 </operation>

 <operation id="oper2" name="reserveCommit" interval="2500"

expected="reserveCommitConfirmed">

 <!-- this operation does not support specifying parameters -->

 </operation>

 <operation id="oper3" name="provision" interval="2500" expected="provisionConfirmed">

 <!-- this operation does not support specifying parameters -->

 </operation>

 <operation id="oper4" name="release" interval="2500" expected="releaseConfirmed">

Sample Scenarios

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

46

 <!-- this operation does not support specifying parameters -->

 </operation>

 <operation id="oper5" name="provision" interval="2500" expected="provisionConfirmed">

 <!-- this operation does not support specifying parameters -->

 </operation>

 <operation id="oper6" name="release" interval="2500" expected="releaseConfirmed">

 <!-- this operation does not support specifying parameters -->

 </operation>

 <operation id="oper7" name="terminate" interval="2500" expected="terminateConfirmed">

 <!-- this operation does not support specifying parameters -->

 </operation>

 </section>

</scenario>

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

47

Appendix B NSI-CTS REST API for Users

This section provides full description of user interface that is intent to be used by the automatic tools.

Through this REST interface it possible to manage and control tests lifecycle by external application,

e.g. scripts with curl.

B.1 Calls

Every executed method requires set of headers. The list is as minimal as possible to provide simple

usage of NSI-CTS API. REST interface payload accepts and produces data only in JSON format.

Header Description

Authentication (Required)

Authentication method for every request. Only Basic method is
supported with based64 encoded <login>:<password>

Content-Type (Optional) It has to be set to application/json

The user’s credentials has to be valid and exists in NSI-CTS, otherwise the service will return

authentication error. It is not possible to retrieve any data without having proper rights to the

requested resources.

Example:

Request:

GET /api/projects/[resources]

Authentication: Basic XXXXXXXXXXXXX

Content-Type: application/json

http://localhost:12080/api/projects

NSI-CTS REST API for Users

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

48

B.1.1 Retrieve user projects

GET /api/projects

-- Body of HTTP response contains list of projects that

user belongs to:

[

 {

 "key":"uuid1",

 "name": "Project Name",

 "networkId": null,

 "usersCount": 1

 }

]

Parameter Type Description

key UUID The unique identifier of the project, generated by the

NSI-CTS when project is created.

name String Name of the project

networkId String User NSI agent identifier. Null if this value has not been

provided by user.

usersCount Num Number of users assigned to the project

B.1.2 Get single project information

GET /api/projects/{key}

-- Body of HTTP response contains project details:

{

 "key":"uuid1",

 "name": "Project Name",

 "networkId": null,

 "usersCount": 1

}

Parameter Type Description

NSI-CTS REST API for Users

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

49

key UUID The unique identifier of the project, generated by the

NSI-CTS when project is created.

name String Name of the project

networkId String User NSI agent identifier. Null if this value has not been

provided by user.

usersCount Num Number of users assigned to the project

B.1.3 Get scenario templates

GET /api/templates

-- Body of HTTP response contains a list of available

templates:

[

 {

 "name": "Scenario Name",

 "type": "PROVIDER",

 "certification": true,

 "templateId": "aee40838-51ae-497d-

9dfa-06839c815288"

 }

]

Parameter Type Description

name String Name of the template

type String NSI Agent type that this scenario template is intended

for.

Values: “PROVIDER”, “AGGREGATOR”, “REQUESTER”

certification Boolean True if template scenario is used for certification

templateId UUID Template scenario unique identifier.

NSI-CTS REST API for Users

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

50

B.1.4 Get all project testcases

GET /api/projects/{key}/testcases

-- Body of HTTP response contains list of performed

testcases for the specified project:

[

 {

 "testCaseId": "testcaseUUID",

 "createdAt": timestamp,

 "status": "STATUS",

 "certification": "USERNSITYPE",

 "resultStatus": "result STATUS",

 "testsCount": 1,

 "tests": null

 }

]

Parameter Type Description

key UUID The unique identifier of the project, generated by the

NSI-CTS when project is created.

testCaseId UUID Identifier of the testcase

createdAt Timestamp Timestamp when testcase has been created.

Unix timestamp.

status String Status of the listed testcase.

Values: “CREATED”, “SCHEDULED”, “INITIALIZING”,

“RUNNING”, “DESTROYING”, “FINISHED”

certification String Certification testcase for specific NSI Agent type.

Values: “PROVIDER”, “AGGREGATOR”, “REQUESTER”

resultStatus String Status of the result.

Values: “NA”, “PASSED”, “PASSED_CONDITIONALLY”,

“FAILED”

testsCount Num Number of tests executed during that testcase

NSI-CTS REST API for Users

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

51

B.1.5 Get single project testcase

GET /api/projects/{key}/testcases/{testCaseId}

-- Body of HTTP response contains testcase for the

specified project:

{

 "testCaseId": "testcaseUUID",

 "createdAt": timestamp,

 "status": "STATUS",

 "certification": "USERNSITYPE",

 "resultStatus": "result STATUS",

 "testsCount": 1,

 "tests": null

}

Parameter Type Description

key UUID The unique identifier of the project, generated by the

NSI-CTS when project is created.

testCaseId UUID Identifier of the testcase

createdAt timestamp Timestamp when testcase has been created.

Unix timestamp.

status String Status of the listed testcase.

Values: “CREATED”, “SCHEDULED”, “INITIALIZING”,

“RUNNING”, “DESTROYING”, “FINISHED”

certification String Certification testcase for specific NSI Agent type.

Values: “PROVIDER”, “AGGREGATOR”, “REQUESTER”

resultStatus String Status of the result.

Values: “NA”, “PASSED”, “PASSED_CONDITIONALLY”,

“FAILED”

testsCount num Number of tests executed during that testcase

NSI-CTS REST API for Users

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

52

B.1.6 Create a new project testcase

POST /api/projects/{key}/testcases

{

 "templateIds": [

 “templateId1”,

 ...,

 “templateIdN”

]

}

Body of HTTP response contains testcase for the

specified project:

{

 "testCaseId": "testcaseUUID",

 "createdAt": timestamp,

 "status": "STATUS",

 "certification": "USERNSITYPE",

 "resultStatus": "result STATUS",

 "testsCount": 1,

 "tests": null

}

Parameter Type Description

tempateIds Array of UUID List of templateId to be executed.

key UUID The unique identifier of the project, generated by the

NSI-CTS when project is created.

createdAt timestamp Timestamp when testcase has been created.

Unix timestamp.

testCaseId UUID Identifier of the testcase

status String Status of the listed testcase.

Values: “CREATED”

certification String Certification testcase for specific NSI Agent type.

Values: null

resultStatus String Status of the result.

Values: “NA”

testsCount num Number of tests executed during that testcase

NSI-CTS REST API for Users

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

53

B.1.7 Create a new certification testcase

POST /api/projects/{key}/testcases/certificate

{

 "type”: “

}

Body of HTTP response contains testcase for the

specified project:

{

 "testCaseId": "testcaseUUID",

 "createdAt": timestamp,

 "status": "STATUS",

 "certification": "USERNSITYPE",

 "resultStatus": "result STATUS",

 "testsCount": 1,

 "tests": null

}

Parameter Type Description

type String Type of User Agent type that certification is executed

for.

Values: “PROVIDER”, “AGGREGATOR”, “REQUESTER”

key UUID The unique identifier of the project, generated by the

NSI-CTS when project is created.

createdAt timestamp Timestamp when testcase has been created.

Unix timestamp.

testCaseId UUID Identifier of the testcase

status String Status of the listed testcase.

Values: “CREATED”

certification String Certification testcase for specific NSI Agent type.

Values: null

resultStatus String Status of the result.

Values: “NA”

testsCount num Number of tests executed during that testcase

Deliverable OCR-DS2.1
NSI Compliance Testing Suite 1.0 Architecture
and User Manuals (NSI-CONTEST)
Document Code: GN3PLUS14-1299-60

54

References

[HSQLDB] http://hsqldb.org/

[NSI-CS-2.0] https://www.ogf.org/documents/GFD.212.pdf

 G. Roberts, T. Kudoh, I. Monga, J. Sobieski, J. MacAuley, C. Guok, “GFD-R-

P.212 NSI-WG: NSI Connection Service v2.0”, May 2014

[Spring] https://spring.io/

Glossary

API Application Programming Interface

CTS Compliance Testing Suite

FSM Finite State Machine

LSM Lifecycle State Machine

NRM Network Resource Manager

NSA Network Service Agent

NSI Network Service Interface

NSI-CS Network Service Interface – Connection Service

NSI-RI Network Service Interface – Reference Implementation

OGF Open Grid Forum

PSM Provision State Machine

REST REpresentational State Transfer

RSM Reservation State Machine

SOAP Simple Object Access Protocol

STP Service Termination Point

SUT System Under Test

XML eXtensible Markup Language

http://hsqldb.org/
https://www.ogf.org/documents/GFD.212.pdf
https://spring.io/

