Impact of Slice-ability on Dynamic Restoration in GMPLS-based Flexible Optical Networks

M. Dallaglio, A. Giorgetti, N. Sambo, F. Cugini, P. Castoldi
Introduction

• Elastic Optical Networks (EONs)
 – De-fragmentation techniques cannot be applied upon failure

• Slice-ability
 – Sliceable Bandwidth Variable Transponders (SBVTs)
 – Sub-carriers can be merged in a single super-channel or sliced and assigned to different spectrum slots and paths

• Slice-ability has implementation costs
 – Data plane
 – Control plane

• Is slice-ability useful during restoration?
 – Slicing can potentially increase the recovered traffic
 – Slicing introduces spectrum overhead that can potentially decrease the recovered traffic
Slice-ability spectrum overhead

- The number of spectrum slices totally occupied by the sliced sub-carriers is higher than the number of spectrum slices originally occupied by the whole super-channel
Slice-ability during restoration

- Before failure 3 LSPs
 - Red, 200 Gbps, 5 slices
 - Yellow, 400 Gbps, 8 slices
 - Blue, 200 Gbps, 5 slices

- Failure on link A-C
 - Yellow LSPs disrupted

- Restoration
 - Two recovery paths
 - 8 contiguous slices are not available in any path
 - Slice-ability is applied dividing the 400 Gbps LSP in two super-channels at 200 Gbps
 - 5 contiguous slices are available on both recovery paths
GMPLS/PCE restoration

- Restoration is performed relying on a centralized Path Computation Element (PCE)
- Procedure
 - Failure
 - Detecting node sends RSVP-TE Notify to the source of disrupted LSPs
 - Upon reception of RSVP-TE Notify the source node:
 - TearDown message to the destination
 - PCReq to PCE for computation of the backup path
 - PCE computes a backup path and replies with PCRep
 - Source node triggers RSVP-TE to establish the backup path
RSA schemes using slice-ability

• RSA is performed at the PCE
• Provisioning
 – LSPs requests are routed as a whole without using slice-ability
 – The least congested path is selected among paths within one hop from the shortest path using locally stored TED
• Restoration
 – PCE applies Sliceable RSA schemes:
 ▪ **NO SPLIT**: slice-ability is not considered
 ▪ **MAX SPLIT**: all the sub-carriers composing disrupted LSPs are routed independently applying slice-ability
 ▪ **ADAPTIVE SPLIT**: if possible disrupted LSPs are recovered as a whole, otherwise slice-ability is applied
Simulation scenario

- **OPNET Modeler**
 - RSVP-TE
 - OSPF-TE
 - PCEP

- **Pan European network**
 - 27 nodes
 - 55 bidirectional links
 - 256 slices per link (3.2 THz)

- **Traffic**
 - Uniform traffic matrix
 - Bandwidth request:
 - 400 Gbps (8 slices)
 - 100 Gbps (3 slices)
 - Poisson traffic
 - Fixed mean holding time 1 hour

- **Restoration**
 - 100 Gbps: recovered as a whole
 - 400 Gbps: as a whole, two 200, each 200 in two 100
Results (1)

- Restoration blocking probability vs traffic load
 - Ratio between recovered and disrupted bandwidth

- MAX SPLIT
 - At low loads, it degrades the blocking due to spectrum overhead
 - At high loads with highly fragmented spectrum, recovering LSPs as a whole is very unlikely, MAX split provides slight benefit

- ADAPTIVE SPLIT
 - Independently on the network, load it significantly decreases the restoration blocking probability
 - Blocking is decreased of 75% at 600 Erlang
• Slice-ability introduces the possibility to partially recover LSPs
• Percentage of recovered/not recovered LSPs with NO split scheme
• Percentage of recovered/partially recovered/not recovered LSPs with ADAPTIVE split
• The figures show that most of the disrupted LSPs are totally recovered with the ADAPTIVE split
Conclusion

• Slice-ability during dynamic restoration in GMPLS/PCE based EONs has been evaluated

• Simulation results
 – Applying slice-ability to all the disrupted LSPs (i.e., MAX SPLIT scheme) degrades the restoration blocking probability due to the introduced spectrum overhead
 – Applying slice-ability only when the LSP cannot be recovered as a whole (i.e., ADAPTIVE scheme) reduces the restoration blocking probability

• Slice-ability benefits overcome the resource overbuild

• Future work
 – Evaluation of delays possibly introduced in the recovery process by the application of slice-ability