
The Implementation of the AMRES VPN
Service

Best Practice Document

Produced by the AMRES-led working group
on Security
(AMRES BPD 112)

Authors: Jovana Palibrk, Ivan Ivanović,Dušan Pajin

March, 2013

2

© TERENA 2010. All rights reserved.

Document No: GN3-NA3-T4-AMRES-BPD-112
Version / date: March 2013
Original language : Serbian
Original title: “Implementacija AMRES VPN servisa”
Original version / date: Revision 1 (of the document dated 12 February 2012) 18 March 2013
Contact: jovana.palibrk@amres.ac.rs, ivan.ivanovic@rcub.bg.ac.rs

AMRES/RCUB is responsible for the contents of this document. The document was developed by the AMRES-led working
group on Security with the purpose of implementing joint activities on the development and dissemination of documents
encompassing technical guidelines and recommendations for network services in higher education and research institutions
in Serbia.

Parts of the report may be freely copied, unaltered, provided that the original source is acknowledged and copyright
preserved.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 238875, relating to the project 'Multi-Gigabit European Research
and Education Network and Associated Services (GN3)'.

3

Table of Contents

Summary 4

Introduction 5

1 The Planning 6
1.1 The Requirements 6
1.2 The Architecture and the Selection of Solution Technology 7

2 The Implementation 12
2.1 The VPN Server 12

2.1.1 OpenVPN 12
2.1.2 Configuring the VPN Concentrator 13
2.1.3 Configuring the VPN Client 23

2.2 The RADIUS Infrastructure 23
2.2.1 Configuring the Top Level RADIUS Server 24
2.2.2 An Example of an Institution’s RADIUS Server Configuration 32

3 Conclusion 35

References 36

Glossary 37

4

Summary

VPN (Virtual Private Network) technology enables a safe connection between a user at a remote location and
his/her home institution through a shared or public network infrastructure (e.g., Internet). The basic
requirements to be met by such a solution are:

 data confidentiality – protection from unauthorised access to information;

 data integrity – protection from unauthorised data modification;

 authentication – confirmation of the identity of devices at the ends of the VPN tunnel.

This document describes the deployment of the AMRES VPN service. This solution involves the
implementation of the SSL/TSL protocol using OpenVPN technology. The main advantages of an OpenVPN
solution are the implementation of advanced data encryption algorithms, the simplicity of installation and
maintenance, and the fact that it is supported by almost all of the client and server platforms that are popular
today. For user authentication, the AMRES VPN service relies on the RADIUS infrastructure, which was
developed for AMRES’ eduroam® service. The document also provides a detailed configuration of the relevant
RADIUS servers on the FreeRADIUS platform.

5

Introduction

This document presents the technical solution and the implementation of the infrastructure that provides the
VPN service to individual AMRES users. AMRES’ VPN service provides AMRES users who are located in an
external network with access to the resources and services that are normally available only from the AMRES
network. The AMRES VPN service is intended for AMRES users who access the Internet in various ways -
using ADSL technology and cable access, or while travelling (for example, at other universities, hotels, or
airports).

The first part of the document describes the services and the requirements that the services dictate to the VPN
infrastructure. The second part provides a detailed configuration of the basic components comprising the
AMRES VPN service, the VPN and the RADIUS server.

6

1 The Planning

1.1 The Requirements

The first step in process of planning the implementation of the VPN service is to recognise services and
resources that could be of interest to the AMRES VPN users and the requirements that should be met by the
implemented technology. VPN technology has been implemented in the AMRES network with the aim of
providing recognised services and resources to its remote users under conditions identical to those the users
have when accessing these services through the local computer network. In order to define the requirements to
be met by the VPN solution, a set of AMRES services has been selected that the users can access through the
VPN infrastructure. The VPN infrastructure in the AMRES network has been implemented in such a way that it
does not explicitly exclude the possibility of using additional AMRES services, though their implementation is
largely dependent on the logical architecture of the computer network of the relevant AMRES member
organisation. This technical solution permits AMRES member institutions to adjust the infrastructure in order to
enable access for their remote internal users to AMRES services.

Remote AMRES users can use following services through the AMRES VPN service.

 KOBSON
 Proxy service
 eLearning server
 E-mail
 Remote desktop at the user's computer
 Access to specialised information systems and services (e.g., university IS, and faculty services)
 Other services that are only accessible from inside the AMRES network

A particularly interesting service is KOBSON, which enables the internal user to access databases containing
scientific magazines and publications in an electronic form. The KOBSON service is available only from the
academic network and through one of the registered proxy servers within the KOBSON system. AMRES VPN
service provides AMRES users with access to the KOBSON service from locations outside the academic
network, through the same, registered proxy servers.

The general requirements that the AMRES VPN solution needs to meet are:

 user authentication based on the user credentials;
 authorisation, which implements the assignment of an IP address to the user;
 accounting mechanisms that monitor user activity.

7

Broadband access technologies are primarily used nowadays (e.g., ADSL, cable access, and wireless access).
Access based on these technologies is established through commercial Internet service providers. Thus, a
potential remote user should access the AMRES services via the Internet, which is a communication
infrastructure that does not guarantee security. Therefore, from a security point of view, the implemented VPN
technology includes:

 mechanisms that protect the confidentiality and integrity of the information necessary to authenticate
users;

 mechanisms for the protection of the confidentiality and integrity of the data exchanged between the
individual users and the available services.

The technology that enables access to individual AMRES users from external networks must not be dependent
on the technology used to establish the users’ access to the Internet.

1.2 The Architecture and the Selection of Solution Technology

The basic components of the VPN service are the VPN client and the VPN concentrator (server). It is
necessary that they implement the same VPN technology. There are several technologies enabling the
implementation of the VPN client and the VPN concentrator functions. The selected technology has to meet the
minimum requirements relating to authentication, authorisation, accounting, and security. In addition, it is also
important that the selected technology be supported by the operating system of both the VPN concentrator and
the VPN client. The selected solution should be compatible with every currently popular operating system
(Windows, Linux, Mac OS, Solaris, FreeBSD, NetBSD, and OpenBSD).

Taking into account all of the above requirements, the OpenVPN software package, which among other
features, uses the SSL/TLS protocol, has been selected for the implementation of the AMRES VPN service.
The basic principles of its functionality and the advantages of the Open VPN program are presented in the next
chapter.

The functions of authentication, authorisation, and accounting have been implemented using the existing
hierarchical RADIUS infrastructure that is used in the eduroam® service. Accordingly, the RADIUS
infrastructure comprises two levels:

 the first level encompasses the VPN TLR (Top Level RADIUS) server that has the role of the proxy
RADIUS server. This server contains a list of the domains of the AMRES institutions using the VPN
service;

 the second level comprises the RADIUS servers of the end institutions, which are responsible for the
authentication of their users. The home institutions are responsible for maintaining the data and
credentials of their users. This data is usually kept in the user database that the RADIUS server uses in
the process of authentication. Since the eduroam® service relies on the same infrastructure, this allows
users to use the same authentication parameters (the same username and password combination) for
both services, i.e., AMRES VPN and eduroam®.

Figure 1 depicts the logical architecture of the AMRES VPN service

8

Figure 1: The logical architecture of the AMRES VPN service

One VPN concentrator has been implemented and it is located at the central location of the academic network.
The VPN concentrator is connected to the VPN TLR (Top-Level RADIUS) server. User authentication is
performed when the user logs in to the AMRES VPN service, and in the course of establishing a secure
connection between the user device and the VPN concentrator. The user credentials are sent in an encrypted
form through the network of the Internet service provider to the VPN server. The VPN server then sends a user
authentication request to the TLR server. When logging in to the VPN service, each user has to provide his/her
username in the following form: user-name@domain-institution, where the domain-institution is the DNS
(Domain Name Server) name of the institution. The TLR server uses the information on the institution’s domain
in order to forward the request to the RADIUS server of the user’s home institution. The RADIUS server of the
institution then processes the received request. While processing the request, the RADIUS server contacts the
user database that stores user accounts.

If the user is authenticated successfully, the TLR server assigns an IP address to the user’s device from the
VPN IP address range of the user’s institution. The address range, 10.8.0.0/16 has been selected as the
AMRES VPN IP range, while each AMRES VPN member institution gets one Class C of IP addresses from the
10.8.0.0/16 range. The assigned range can be further divided into subnets within an institution – e.g., a subnet
for students and a subnet for employees, based on which the institution can filter traffic in accordance with its
access policy.

Figure 2 shows the logical architecture of the AMRES VPN service with the addressing scheme. For the
purposes of this document and for its simplicity, it is assumed that AMRES owns the 147.91.0.0/16 IP address
range.

9

Figure 2: The distribution of IP addresses within the AMRES VPN service

Accounting is also implemented using the RADIUS server. The VPN server is configured to send the
information about a user session to the TLR server. The TLR server stores this information in the appropriate
SQL database.

The VPN server is based at the central location of the AMRES network. On the firewall system, UDP port 1194
is opened for the IP address of the server, since the OpenVPN service is configured to accept connections of
the VPN clients though this port. The cryptographic protection of the traffic is ensured only between the client’s
device and the VPN server. When the VPN server receives the traffic from the user, the traffic is decrypted and
forwarded in its original form to its destination through the academic network. If the client traffic has been sent
in plain text format before it has been encrypted, it will be forwarded by the VPN server to its destination in the
AMRES network, also in plain text format.

Figures 3 and 4 illustrate the solution for routing within the VPN service. When a user connects to the AMRES
network via the VPN service, a point-to-point virtual tunnel interface is established between the VPN server and
the user device. A virtual IP address is assigned to each end of the tunnel. The virtual IP address of the server
is 10.8.0.1, while the client gets an address from the range belonging to his/her home institution (one Class C
from the 10.8.0.0/16 range), as shown in Figure 2. Figure 3 shows the route of the traffic from the VPN client to
a host in the AMRES network. The AMRES VPN server has two network interfaces to which public IP
addresses have been assigned. The purpose of one network interface is to connect the VPN clients to the VPN
server and to establish the VPN tunnel – this is the external interface marked as eth0 on Figure 3. The IP
address of this interface is 147.91.a.b. This network interface receives the traffic sent by the VPN clients.
Following the decryption and encapsulation, the VPN device routes the traffic towards the AMRES network
using the other, internal interface, which is marked as eth1 on Figure 3. The IP address of this interface is
147.91.c.d.

10

Figure 3: The routing of packets from the VPN client to the AMRES network

Figure 4 shows the situation in which the packets from the AMRES network are returned to the VPN client. The
IP address of the VPN client is used as a source address of the IP packet the client sends through the VPN
tunnel. The same address is also used as a source address in the packet when it leaves the SSL tunnel and
reaches its destination. For this reason, the devices in the AMRES network must have a configured route to the
10.8.0.0/16 VPN IP address range, to which the clients’ addresses belong. This route directs the packets for
the VPN range to the address of the internal interface of the VPN server – eth1.

Figure 4: The routing of packets by the AMRES network towards the VPN client

The AMRES VPN service supports split tunnelling. Split tunnelling is a process that allows a remote VPN user
to simultaneously access a public network, most often the Internet, through his/her local network connection
and the resources of his/her organisation using the established VPN tunnel. The AMRES VPN service is
implemented in such a way that the traffic from the VPN user device towards all AMRES address ranges is sent
through the VPN tunnel, while all other traffic from the user device is sent through the local network connection,
as illustrated in Figure 3. This ensures greater efficiency and maintains the bandwidth, since the quantity of
traffic sent through the VPN tunnel is reduced significantly.

11

Open source software packages have been selected for the implementation of this solution. The OpenVPN
package has been used for configuring the VPN server, while the TLR server has been implemented using the
FreeRADIUS program package. The details regarding the configuration of the VPN and TLR servers, as well as
an example of the configuration required for the implementation of the RADIUS server institution are presented
in the next chapter.

12

2 The Implementation

2.1 The VPN Server

2.1.1 OpenVPN

OpenVPN is an open source software package for the implementation of virtual private networks. A safe and
stable SSL/TLS mechanism is used within the OpenVPN software for the establishment of secure
communication between VPN points. Unlike the other SSL VPN solutions, which allow the use of an Internet
browser on the client side, it is necessary to install the OpenVPN package on both the VPN server and the VPN
client side.

The OpenVPN program runs in the Linux user space, rather than in the kernel space, which leads to increased
security, and simpler installation and maintenance of the OpenVPN software on different platforms.

On the network layer, OpenVPN uses the TUN/TAP virtual network interfaces. These network interfaces act as
standard network interface, and their purpose is to tunnel the IP traffic. Figure 5 shows how OpenVPN uses the
standard network interfaces.

Figure 5: OpenVPN using standard interfaces

The TUN interface is a virtual network adapter “seen” by the operating system as a virtual PPP (Point-to-Point)
network interface, such as, for example, a T1 line. The TUN interface simulates a device of the network layer of
the OSI reference model (layer 3), and layer 3 packets, such as IP packets, are sent through it. This work mode
is called routed mode because the TUN interfaces are used to route the traffic. On the other hand, the TAP
interface can be used as a virtual Ethernet adapter. It simulates a device of the data link layer of the OSI
reference model (layer 2) that sends and receives layer 2 packets such as Ethernet frames. This work-mode is

13

called bridging mode, since the TAP interface is used as a network bridge device. When data is sent via these
interfaces, the data is sent to the TUN/TAP interface instead of the physical network adapter, from where it is
taken over by the program in the user space that is connected to the interface, in this case, by the OpenVPN
program. The VPN process encrypts the packets from the TUN or TAP virtual adapters using the SSL/TLS
cryptography libraries. The data, thus encrypted, is subsequently encapsulated and sent to the other end of the
tunnel. The UDP (standard) or TCP (optional) protocols can be used for packet encapsulation. When choosing
the transport protocol into which the encrypted data from the TUN/TAP interface will be encapsulated, one
needs to bear in mind that it is the packets already containing a transport protocol header (TCP and UDP) that
are being encapsulated. The TCP protocol is designed to operate in an unreliable network environment. During
the encapsulation from TCP into TCP, one reliable protocol is encapsulated into another reliable protocol,
which may lead to decreased efficiency of services. Therefore, it is better to opt for encapsulation into UDP
packets. Also, in this way, the IP packet is encapsulated into a protocol whose level of unreliability is more
similar to that of the data link layer for which the IP protocol has been designed. Once the device on the other
end of the SSL tunnel has received the encrypted and encapsulated packets, the OpenVPN process will first
run de-encapsulation and de-encryption, and then it will send the packets to the TUN/TAP interface. Routing
and safety rules can be applied to these interfaces just like to any hardware network adapters. In the course of
configuring OpenVPN, it is possible to select all these parameters, as needed (the use of TUN or TAP interface,
the encapsulation into UDP or TCP, and the port through which the connection will be established), but it is
necessary to have the same parameters configured on both ends of the tunnel.

With these characteristics, the OpenVPN package offers the following possibilities:

 simple installation on any operating system. It is possible to use the OpenVPN package on almost all
operating systems that are popular today (Windows, Linux, Mac OS, Solaris, FreeBSD, NetBSD and
OpenBSD);

 a high level of flexibility – program scripts can be modified to suit specific needs (failover, load
balancing);

 transparency – it is not necessary to configure only static IP addresses on both sides of the tunnel, as
IP addresses can also be dynamically assigned and users need not be aware of the change of IP
address when the VPN tunnel is being established;

 protection of remote users by way of the internal protective system (firewall) – a remote user connected
to the central location through the VPN tunnel can change the network settings on his/her device so as
to send all traffic through the tunnel. The central firewall service in the network to which the user is
connected through the VPN tunnel can protect the user device, even though the device is not
physically within the network that is protected by the firewall;

 only one port needs to be open on the firewall system in order to allow incoming connections from the
VPN clients;

 virtual interfaces allow for specific network and firewall settings and rules – all the rules, restrictions,
forwarding mechanisms and methods such as NAT (Network Address Translation) can be applied on
the OpenVPN tunnels.

OpenVPN enables user authentication by way of a secret key, a certificate, or by username and password
verification.

2.1.2 Configuring the VPN Concentrator

The OpenVPN server is set up by modifying the configuration files on the server and the client side. Before
modifying these files, it is necessary to set the elements of the Public Key Infrastructure (PKI). These steps are
explained, in detail, below. The location of the configuration file on the server side will depend on the manner in

14

which the OpenVPN package has been installed. In the case of the AMRES VPN server, a standard OpenVPN
package that is included in the distribution of the operating system has been installed. Because of this, the
configuration directory is /etc/openvpn, while the name of the configuration file, which is discussed below, is
server.conf.

2.1.2.1 Creating Private and Public Keys

The first step in setting up the OpenVPN server is the configuration of the necessary parameters to be used for
authentication, encryption, and keys exchange. VPN authentication should be mutual, i.e., the clients should
authenticate the server and the server should also perform the client authentication, so that mutual trust and
secure connections can be established. As noted in chapter 1.2, authentication of the VPN clients is performed
through the RADIUS infrastructure. On the other hand, the elements of the PKI infrastructure are used in order
for the VPN client to authenticate the VPN server. The PKI infrastructure comprises a private key, a certificate
(with a public key) on the side of the server and the CA (Certificate Authority) certificate, and a key used for
signing the server certificate. In authenticating the server, the client first verifies that the server certificate has
been signed by the CA, and then checks the credibility of information, such as the value of the CN
(Common Name) field in the server certificate containing the DNS name of the server.

In order to set up the PKI elements, the scripts obtained as part of the OpenVPN program are used. These
scripts are located in the easy-rsa directory. The location of the easy-rsa directory can be found by using
the following command:

$ find / -name easy-rsa

The assumption made in this document is that the scripts are located in the /usr/share/doc/openvpn
directory.

By using the scripts from the easy-rsa directory, the CA private key and the certificate are created first (steps
1, 2, and 3). The private key and the certificate are then created for the VPN server and the server certificate is
signed by the CA private key (step 4). Therefore, the VPN server certificate is self signed. The VPN client
should have the CA certificate in order to authenticate the VPN server. Of course, it is possible to use a
certificate for the VPN server, signed by another CA authority. For example, TERENA certificates, which are
signed by the TERENA Certification Authority and available through the TCS Service (TERENA Certificate
Service) can be used for this purpose. In this case, steps 1, 2, 3, and 4 would be skipped, and the TERENA CA
and the obtained server certificate would be placed at the appropriate locations.

The steps that should be taken when configuring the PKI infrastructure elements are presented below.

1. The easy-rsa directory is copied onto the /etc/openvpn location

$ mkdir -m 700 -p /etc/openvpn/easy-rsa
$ cd /etc/openvpn/easy-rsa
$ cp -drp /usr/share/doc/openvpn/easy-rsa/2.0/*

2. The KEY_COUNTRY, KEY_PROVINCE, KEY_CITY, KEY_ORG and KEY_EMAIL parameters should
then be configured in the /etc/openvpn/easy-rsa/vars file. An example of the completed vars
file is shown below.

$ vi /etc/openvpn/easy-rsa/vars

15

export EASY_RSA="`pwd`"
export OPENSSL="openssl"
export KEY_CONFIG=`$EASY_RSA/whichopensslcnf $EASY_RSA`
export KEY_DIR="$EASY_RSA/keys"
export PKCS11_MODULE_PATH="dummy"
export PKCS11_PIN="dummy"
export KEY_SIZE=2048
export CA_EXPIRE=3650
export KEY_EXPIRE=3650
export KEY_COUNTRY="RS"
export KEY_PROVINCE="RS"
export KEY_CITY="Belgrade"
export KEY_ORG="AMRES"
export KEY_EMAIL=openvpn@example.com

In order to ensure higher security, it has been accepted that the minimum length of a pair of
asymmetric keys generated during the creation of the certificate request needs to be 2048 bits. This is
defined by the KEY_SIZE parameter.

3. In this step, the CA certificate is created and will later be used for signing the certificate for the VPN
server. By using the cd command, it is necessary to locate the directory containing the vars file and
create the CA private key and the certificate, using the set of commands listed below. Before running
these commands, it should be checked if the openssl.cnf file exists in the /etc/openvpn/easy-
rsa directory. If this file cannot be found in this directory, openssl-x.x.x.cnf file should be copied
(in the example below, it is openssl-1.0.0.cnf) to openssl.cnf. A strong password should be
established for the CA certificate within the --pass parameter.

$ cd /etc/openvpn/easy-rsa
$ cp openssl-1.0.0.cnf openssl.cnf
$. ./vars
$./clean-all
$./build-ca –pass

The ./build-ca command creates the CA certificate and the key using the openssl command. All
the parameters except for the CN name will be taken over from the vars file. The CN name should be
entered subsequently. The result of the running of this command is presented below.

Note: the result of the running of this command can differ from the example shown below depending on
the version of the OpenVPN software package.

root@openvpn:/etc/openvpn/easy-rsa# ./build-ca --pass
Generating a 2048 bit RSA private key
................++++++
.............................++++++
writing new private key to 'ca.key'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

16

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [RS]:
State or Province Name (full name) [RS]:
Locality Name (eg, city) [Beograd]:
Organization Name (eg, company) [AMRES]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) [AMRES CA]:
Name [changeme]: openvpn
Email Address [openvpn@example.com]:

4. The next step is the generation of the server certificate and the private key. The server certificate will
have been signed by the CA private key generated in the previous step. The build-key-server
script is used for this purpose. When running this script, the name of the server (hostname) that will be
entered in the CN field of the generated certificate should be specified. The result of the running of this
script is shown below. When the ca.key password is requested within this script, the password for the
CA certificate used in the previous step should be entered.

Note: the result of the running of this command can differ from the example shown below, depending
on the version of the OpenVPN software package.

root@openvpn:/etc/openvpn/easy-rsa# ./build-key-server openvpn
Generating a 2048 bit RSA private key
......++++++
......++++++
writing new private key to 'openvpn.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [RS]:
State or Province Name (full name) [RS]:
Locality Name (eg, city) [Beograd]:
Organization Name (eg, company) [AMRES]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) [openvpn]:
Name []:
Email Address [openvpn@example.com]:

Please enter the following 'extra' attributes

17

to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /etc/openvpn/easy-rsa/2.0/openssl.cnf
Enter pass phrase for /etc/openvpn/easy-rsa/2.0/keys/ca.key:
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'RS'
stateOrProvinceName :PRINTABLE:'RS'
localityName :PRINTABLE:'Beograd'
organizationName :PRINTABLE:'AMRES'
commonName :PRINTABLE:'openvpn'
emailAddress :IA5STRING:'openvpn@example.com'
Certificate is to be certified until Feb 13 17:03:04 2023 GMT (3650 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

5. In order to introduce additional protection, another shared secret key should be generated – the tls-
auth key, as follows.

$ cd /etc/openvpn/easy-rsa/keys
$ openvpn --genkey --secret ta.key

The command generates the secret shared key and enters it in the ta.key file. This key should be
transferred in a secure manner to the VPN server and the VPN client.

Additional protection obtained in this way implies the addition of the HMAC (Hash-based Message
Authentication Code) signature to all packets exchanged in the course of the SSL/TLS handshake
process, in order to verify the integrity of those packets. Any UDP packet that does not have the correct
HMAC signature will be rejected without further processing. In this way, the server is also protected
from:

 DoS attacks;

 scanning of the ports in order to establish which UDP port of the server is in the listening state;

 initiation of SSL/TLS handshake by an authorised device (such an attempt would normally fail at
the authentication stage, but with the tls-auth option, these attempts are prevented much earlier).

6. A key that will be used for the encryption of data within the VPN tunnel also needs to be created. The
OpenVPN uses the DH (Diffie-Hellman) algorithm for the exchange and generation of keys. The DH
protocol ensures safe exchange of the secret key between the VPN client and the VPN server. The
build-dh script in the easy-rsa directory is used for generating the DH parameters. The script
actually uses the openssl dhparam command, while the input parameters are defined in the vars
file. The build-dh script is run by the following command:

18

root@openvpn:/etc/openvpn/easy-rsa# ./build-dh
Generating DH parameters, 2048 bit long safe prime, generator 2
This is going to take a long time

This completes the generation of all the required keys. The next step is the setting up of the configuration files.

2.1.2.2 Setting up the Configuration Files

The OpenVPN program can be configured through the command line or through the configuration files.
Although these two methods of configuration are identical, this document shows the configuration through the
configuration files, since this method has proved to be simpler in comparison to using long commands. One of
important advantages of this method lies in the fact that the format of the configuration files is the same in all
operating systems, so, if required, it can easily be copied from one operating system to another.

A configuration file should be created on the server side. Examples of the configuration files can be found in the
sample-config-files directory. This directory can be located by using the following command.

$ find / -name sample-config-files

In this case, it is assumed that the directory with examples of configuration files is located in the
/usr/share/doc/openvpn-2.0 directory.

Below is the structure of the configuration file of the AMRES VPN server.

$ cp /usr/share/doc/openvpn-2.0/sample-config-files/server.conf.gz /etc/openvpn
$ cd /etc/openvpn
$ gunzip server.conf.gz
$ vi /etc/openvpn/server.conf

local 147.91.a.b
port 1194
proto udp
dev tun

ca /etc/openvpn/easy-rsa/2.0/keys/ca.crt
cert /etc/openvpn/easy-rsa/2.0/keys/server.crt
key /etc/openvpn/easy-rsa/keys/server.key
dh /etc/openvpn/easy-rsa/keys/dh2048.pem
tls-auth /etc/openvpn/easy-rsa/keys/ta.key 0

server 10.8.0.0 255.255.0.0

plugin /etc/openvpn/radiusplugin/radiusplugin.so /etc/openvpn/radiusplugin/radi
usplugin.cnf
username-as-common-name
client-cert-not-required
topology subnet

fragment 1200

19

mssfix 1200

push "route 147.91.0.0 255.255.0.0"
push "route 147.91.a.b 255.255.255.255 net_gateway 0.0.0.0"
client-config-dir ccd
keepalive 10 120
comp-lzo
user nobody
group nogroup
daemon
persist-key
persist-tun
status /var/log/openvpn-status.log
log-append /var/log/openvpn.log
verb 5

All configuration lines are explained below.

 The local command defines the IP address at which the VPN server will accept the connections of the
VPN clients. This is the interface address configured for use by external traffic.

local 147.91.a.b

 The server configures the first available tun interface with the IP address 10.8.0.1, as the server directive
defines the range as 10.8.0.0/16. The server then listens for incoming connections on UDP port 1194. The
client will connect to the VPN server through this port.

port 1194
proto udp
dev tun
server 10.8.0.0 255.255.0.0

 In order to enable the TLS handshake, the route to the CA certificate, the public and private keys of the
server and the Deffie-Helman parameters should be specified in the server configuration file. The route to
the directory where the ta.key file is located should also be specified. On the server side, 0 is added next
to the file location, and on the client side, 1 is added next to the file location.

In the example shown below, these parameters are located in the /etc/openvpn/easy-rsa/keys/
directory.

ca /etc/openvpn/easy-rsa/keys/ca.crt
cert /etc/openvpn/easy-rsa/keys/openvpn.crt
key /etc/openvpn/easy-rsa/keys/openvpn.key
dh /etc/openvpn/easy-rsa/keys/dh2048.pem
tls-auth /etc/openvpn/easy-rsa/keys/ta.key 0

 As it has been decided that the authentication of clients will be performed based on the username and
password rather than on the certificate, the following directives are added to the configuration file of the
server.

20

username-as-common-name
client-cert-not-required

The first line defines that the username, user-name@domain.institution, is used as the Common Name
parameter, if necessary. It is used, among other purposes, when using the configuration directories for the
VPN clients, the so-called CCD (Client Config Directory) directories, which are explained later. The second
command configures that the clients will not be authenticated through certificates.

 Also, because the authentication of clients is performed through the RADIUS protocol, it is necessary to
install and configure a plug-in for connection to the RADIUS protocol – the radiusplugin. This raiusplugin
can be downloaded from http://www.nongnu.org/radiusplugin/. Following the installation of the radiusplugin
in accordance with the instructions contained in the README file, the directory containing the
radiusplugin.cnf and radiusplugin.so files should be copied to the configuration directory of the
OpenVPN server (the name of this directory is radiusplugin). The radiusplugin.cnf file should then
be configured according to the appropriate parameters. An example of this file is shown below.

 $ vi /etc/openvpn/radiusplugin/radiusplugin.cnf

NAS-Identifier=OpenVpn
Service-Type=5
Framed-Protocol=1
NAS-Port-Type=5
NAS-IP-Address=147.91.c.d
OpenVPNConfig=/etc/openvpn/server.conf
subnet=255.255.0.0
overwriteccfiles=true
server
{
 acctport=1813
 authport=1812
 name=147.91.p.q
 retry=1
 wait=1
 sharedsecret=pass
}

The NAS-IP-Address variable defines the IP address of the OpenVPN server NIC card from which
authentication requests will be sent to the RADIUS server. Since the mask for the address range is used
when assigning IP addresses to the clients is 255.255.0.0, this value is assigned to the subnet variable.
Under the server section, the IP address of the RADIUS server to which the VPN server will send the
authentication requests of the VPN clients should be defined (name variable), which, in this case, is the
TLR server, as well as the ports to which authentication and accounting requests will be sent (variables
acctport and authport). Port 1812 is the default authentication port, while port 1813 is used for
accounting. It is also important to configure the shared secret key used so that the RADIUS server can
accept authentication requests sent by the VPN server (sharedsecret variable). The same key needs
also to be defined on the RADIUS server side.

The location of the radiusplugin and the configuration file has to be specified in the configuration file of the
server.

21

plugin /etc/openvpn/radiusplugin/radiusplugin.so /etc/openvpn/radiusplugin/r
adiusplugin.cnf

 In some cases, it may be necessary to change the options for certain clients in comparison to the general
settings, and the client-config-dir option can be used for this. This option allows IT staff, for
example, to assign an IP address to a client, to send corresponding options to the client, such as the type
of compression or the IP address of the DNS server, or to temporarily disable the VPN connection to the
client. When the client is connected to the server using his/her credentials, the OpenVPN server will verify if
the corresponding configuration file exists for that client (it will use its CN name in order to locate the file),
the so-called CCD file in the directory defined by the client-config-dir command. If this file exists,
the server will configure the parameters for the client, based on the information contained therein.

The radiusplugin uses precisely the same client configuration files defined in this directory when IP
addresses are assigned to the clients. Specifically, when the RADIUS server assigns an IP address to an
authenticated client, the radiusplugin will record this information in the file whose name is actually the
username of the user. The OpenVPN server will then use this information as explained above.

For this reason, it is necessary to create the client-config-dir directory.

 $ cd /etc/openvpn/
 $ mkdir ccd

The following configuration line should then be added to the server.conf file.

client-config-dir ccd

 The keepalive command will set up the appropriate timers on both the client and the server sides.
According to the configuration of the AMRES VPN server, a packet is sent every ten seconds from the
server to the client and vice versa in order to check if the VPN tunnel is active and operational. If no
response is received within 120s on the client side, the VPN connection is automatically restarted. On the
server side, the timeout period is doubled so that the server restarts the VPN connection if no response is
received within 240s.

keepalive 10 120

 Before the encryption, the data can optionally be compressed using the LZO (Lempel-Ziv-Oberhumer)
libraries.

comp-lzo

 The mssfix and fragment commands are used to set up the length of the UDP packets sent through the
VPN tunnel. The fragment directive defines the maximum length of the UDP datagrams. More precisely,
the above value pertains to the packet length after the encapsulation but without the UDP header. The
mssfix directive is used to limit the packet size if the TCP session is established through the VPN tunnel,
so that the resulting UDP datagram is not larger than the size defined by this command after the OpenVPN
encapsulates the packets. The mssfix command prevents fragmentation of packets, but if it happens that
a longer packet needs to be sent through the tunnel (e.g., when it is not the TCP protocol), the OpenVPN
server will fragment such a packet as a result of the fragment command. The need for such a
configuration arises when a certain number of users constantly face problems with the VPN connection.
Namely, the VPN connection could be established successfully, but the users were not able to actively use

22

it. It has been established that all users who faced this problem were establishing the local connection with
the Internet through the same Internet service provider that reduced the MTU (Maximum Transmission
Unit) value on its devices below the standard value. Thus, the problem has been successfully solved in the
manner described above.

fragment 1200
mssfix 1200

 The AMRES VPN server is configured to send the routes for the network ranges available through the VPN
tunnels to its clients. This has been enabled through the push command. The VPN server sends the routes
to the AMRES IP address ranges. The server also sends a route to the IP address of its external interface,
147.91.a.b, which redirects packets at that address to the local gateway of the VPN client device rather
than sending them through the VPN tunnel. The reason behind such a configuration lies in the fact that the
address of the external interface of the VPN server belongs to the AMRES address range, and it is through
this address that the VPN connection is established.

push "route 147.91.0.0 255.255.0.0"
push "route 147.91.a.b 255.255.255.255 net_gateway 0.0.0.0"

 The OpenVPN is run as a process (daemon), and for security reasons, the OpenVPN process is assigned
to the user nobody and the group nogroup, by the commands user and group, which reduces
privileges. In this way, even if a remote attacker managed to compromise the OpenVPN process, the
attacker will be assigned the privileges of the user nobody and not of the user root. However, during the
next running of the process, the user nobody will not have sufficient privileges to access certain resources
and that is why the persist-tun and persist-key directives need to be added. These prevent the
resetting of the tun interface on the next running of the process so that certain keys for reading protected
files do not have to be entered again.

user nobody
group nogroup
daemon
persist-key
persist-tun

 Due to the log-append directive, the OpenVPN process will enter the debug information and messages in
the said file. New log information will be appended and the old information will not be overwritten. The
status directive defines the entering of information about the status of the current VPN connection in the
said file. This information may be very important when monitoring the OpenVPN process and resolving any
problems.

status /var/log/openvpn-status.log
log-append /var/log/openvpn.log

 The verb directive defines the level of detail of the information entered in the log files. Empirical research
has shown that level 5 provides sufficient information to resolve problems related to the establishment of
connections that tend to be the most frequent.

verb 5

Other configuration lines may be commented out (by adding # at the beginning of the line).

23

2.1.3 Configuring the VPN Client

Following the configuration of the VPN server, the VPN client also needs to be configured. In order to
authenticate the server, the CA certificate needs to be copied to the client. The client should also contain the
same ta.key key as the server. Since the clients are authenticated by the username and password, it is
necessary to specify the auth-user-pass directive. Other settings required in order to establish successful
communication between the VPN and the server configured in the manner were explained in the previous
chapter and include the following: the specification of the use of the TUN interface; the encapsulation of
packets into the UDP protocol; the fragmentation and the type of compression. The content of the configuration
file of the VPN client is presented below.

client
fragment 1200
mssfix 1200
dev tun
proto udp
remote vpn-example.amres.ac.rs 1194
resolv-retry infinite
nobind
persist-key
persist-tun
ca ca.crt
ns-cert-type server
tls-auth ta.key 1
comp-lzo
verb 1
auth-user-pass
pull
explicit-exit-notify

The vpn-example.amres.ac.rs name is the DNS name for the external network card of the VPN server
- 147.91.a.b.

2.2 The RADIUS Infrastructure

The AMRES VPN service relies on the RADIUS infrastructure, through which the authentication, authorisation,
and accounting activities are performed. Since the AMRES solution is implemented using the FreeRADIUS
platform, this chapter deals with setting the basic modules of the FreeRADIUS server for the purposes of
configuring the TLR server. It also provides an example of configuring an institution’s RADIUS server, again by
using the FreeRADIUS platform.

It is presumed, in this case, that the FreeRADIUS program has been installed and that there are no other
changes except those presented below.

The FreeRADIUS server is configured by modifying certain configuration files. The location of these files
depends on the way in which the FreeRADIUS package has been installed.

24

 If the standard FreeRADIUS package is installed on an operating system distribution, the configuration
files will be located in the /etc/raddb directory of CentOS, or in the /etc/freeradius directory of
the Ubuntu operating system.

 If the FreeRADIUS program is compiled and installed using the configure, make, make install
commands, the configuration files will be located in the /usr/local/etc/raddb directory.

It is assumed, hereinafter, that the configuration directory for FreeRADIUS is /usr/local/etc/raddb.

The FreeRADIUS server configuration is logically divided into different configuration files. These files are
modified in order to configure certain functions, components, and modules for FreeRADIUS. The main
configuration file is radiusd.conf, into which the contents of other configuration files are included by the
$INCLUDE command. The configuration files significant for setting the server for the purposes of the solution
presented are:

 proxy.conf – used to define the domain for which the requests will be forwarded to other RADIUS
servers;

 clients.conf – a file in which clients of the RADIUS server are defined. Any accessing device that is
supposed to send requests to the FreeRADIUS server must be defined in this file. It can be a network
device, a VPN server, another RADIUS server, etc. A shared secret for each client is defined in this file,
and it must also be defined on the relevant device. The shared secret enables secure communication
between the device and the FreeRADIUS server;

 sql.conf – contains the sql module configuration. All the necessary settings for connecting and
using the sql database are contained in this file;

 virtual servers – these servers enable a larger number of independent RADIUS services to be
configured on the FreeRADIUS platform. A virtual server is created in the /sites-available
directory and activated by creating a link in the /sites-enabled directory. After the FreeRADIUS
server has been installed, two virtual servers are activated: default and inner-tunnel. The
default virtual server is used for typical requests, while the inner-tunnel is used for configuring
the EAP method. Here, only the default virtual server is used;

 users – located in the FreeRADIUS configuration directory. The contents of this file can be used for
authentication and authorisation purposes. User-related settings are entered in this file.

2.2.1 Configuring the Top Level RADIUS Server

This chapter explains the configuration files that are necessary for setting up the TLR server. It should be taken
into account that the TLR server is a proxy RADIUS server, that IP addresses are assigned to authenticated
VPN users through this server, and that it is used to process data on the activity of VPN users.

25

2.2.1.1 VPN Virtual Server

The configuration file of the virtual server contains the following sections: listen; authorize;
authenticate; post-auth; pre-proxy; post-proxy; preacct; accounting; and session.
The basic procedure of processing the incoming authentication request comprises the following steps:

 when the FreeRADIUS server receives a user authentication request (Access-Request), the request is
first processed in the authorize section of the virtual server. The modules defined in the authorize
section determine the mechanism used for authenticating the user. The request can be processed
additionally in this section;

 after the authentication type has been determined, the request is sent to the authenticate section. A
suitable subsection within this section will take over the request and conduct authentication;

 following a successful authentication, the procedure reaches the post-auth section;
 the accounting section is in charge of processing the incoming accounting messages.

The TLR server should only forward the received authentication request to the RADIUS server of the client’s
home institution. It is necessary to configure one virtual server that will process the authentication requests in
this manner. For this purpose, in the /sites-available directory, the contents of the default
configuration file is copied to a new vpn file.

The created configuration file is modified according to the configuration provided below.

 $ cd /usr/local/etc/raddb/sites-available
 $ cp default vpn
 $ vi vpn

server vpn {
authorize {
 preprocess
 auth_log
 chap
 mschap
 digest
 suffix
 eap
 files
 expiration
 logintime
 pap
}
authenticate {
 Auth-Type PAP {
 pap
 }
 Auth-Type CHAP {
 chap
 }
 Auth-Type MS-CHAP {
 mschap
 }
 digest
 unix
 eap
}

26

preacct {
 preprocess
 acct_unique
 suffix
 files
}
accounting {
 detail
 radutmp
 sqlippool
 sql
 exec
 attr_filter.accounting_response
}
session {
 radutmp
}
post-auth {
 sqlippool
 reply_log
 exec
 Post-Auth-Type REJECT {
 attr_filter.access_reject
 }
}
pre-proxy {
 pre_proxy_log
}
post-proxy {
 post_proxy_log
 eap
}
}

The following changes are significant with regard to the default configuration file.

1. “server vpn {“ line has been added at the very beginning of the file (above the authorize
section), while “}” has been added at the end of the file.

2. In the authorize section, the files module has been specified. The same module is also located at
the default virtual server. The files module is used to read the users configuration file for the
authentication and authorisation of clients. In the case of the TLR server, the users file is used to add
to the incoming authentication requests the information about the IP address range name, from which
the authenticated users will be assigned an IP address. The IP address range configuration is
explained in the next item. IP address is assigned based on the domain of the institution specified
within username attribute in the authentication request. For that purpose, the following command has
been added at the end of the users file for each AMRES member institution using the VPN service:

$ vi /usr/local/etc/raddb/users
. . . .
DEFAULT Suffix == "inst1.ac.rs", Pool-Name := pool-inst1
. . . .

The DEFAULT directive means that the configuration that follows pertains to any username; Suffix is
the attribute specifying the domain from the username, while Pool-Name is the attribute specifying the

27

IP address range from which IP addresses are assigned to clients. Hence, any user whose domain is
inst1.bg.ac.rs will get an IP address from the address range named pool-inst1.

3. In the post-auth section, there are configuration lines pertaining to the assignment of IP addresses to
authenticated VPN clients.

Note: the rlm_ippool module had been used initially for assigning the IP addresses to VPN users.
However, a problem can regarding the assignment of the same IP address simultaneously to different
VPN users, which is why the assignment of IP addresses to VPN clients has been implemented by
using the rlm_sqlippool module. For that purpose, it is necessary to add the following configuration
lines in the radiusd.conf file at the modules section.

$ vi /usr/local/etc/raddb/radiusd.conf

 modules {

 $INCLUDE sql.conf
 $INCLUDE sqlippool.conf

The sql.conf file located in the configuration directory of the FreeRADIUS server
(/usr/local/etc/raddb/sql.conf) is a configuration file of the sql module, and it contains all
the configuration parameters necessary to establish the connection with the corresponding SQL
database for any purpose. The TLR server is used for assigning IP addresses to VPN clients and for
accounting, i.e., the same SQL database contains the table of the IP address range allocated to the
users and the tables that are filled in the course of monitoring user activity.

The sqlippool.conf file is also located in the configuration directory
(/usr/local/etc/raddb/sqlippool.conf), but it only concerns the assignment of IP addresses
to clients. This file is a configuration file of the sqlippool module, which is called in the post-auth
section of the VPN virtual server. Below is the configuration of this file.

$ vi /usr/local/etc/raddb/sqlippool.conf

sqlippool {
 sql-instance-name = "sql"
 ippool_table = "radippool"
 lease-duration = 86400
 pool-key = "%{User-Name}"
$INCLUDE sql/mysql/ippool.conf
 sqlippool_log_exists = "Existing IP: %{reply:Framed-IP-Address} \
 (did %{Called-Station-Id} cli %{Calling-Station-Id} port %{NAS-Port}
user %{User-Name})"
 sqlippool_log_success = "Allocated IP: %{reply:Framed-IP-Address}
from %{control:Pool-Name} \
 (did %{Called-Station-Id} cli %{Calling-Station-Id} port %{NAS-Port}
user %{User-Name})"
 sqlippool_log_clear = "Released IP %{Framed-IP-Address}\
 (did %{Called-Station-Id} cli %{Calling-Station-Id} user %{User-Name})"
 sqlippool_log_failed = "IP Allocation FAILED from %{control:Pool-Name} \
 (did %{Called-Station-Id} cli %{Calling-Station-Id} port %{NAS-Port}
user %{User-Name})"

28

 sqlippool_log_nopool = "No Pool-Name defined \
 (did %{Called-Station-Id} cli %{Calling-Station-Id} port %{NAS-Port}
user %{User-Name})"
}

The highlighted lines are of significance. Within this configuration file, it is the sql module defined in
the sql.conf file that is being called. A table named radippool has been defined as the table into
which the range of IP addresses to be assigned to VPN clients will be entered (ippool_table); it has
been defined in the corresponding MySQL database, as is explained below. The time of assignment of
addresses has also been defined within the lease-duration parameters (in this example, it is
configured to twenty-four hours). The parameter based on which a unique IP address is assigned
(pool-key) is the username (User-Name).

The ippool.conf configuration file (that is called by using the $INCLUDE command) defines the
different queries at MySQL base. These serve to assign IP addresses to clients and to return/release
the addresses in various cases. Special attention should be paid to the configuration of this file as it
may happen that the syntax used does not suit the version of the MySQL base, which is why certain
functions would not be executed successfully (e.g., releasing the IP address from the client who
terminated the VPN connection). In that case, it is necessary to modify the queries so that the syntax
corresponds to the version of the MySQL database being used.

Note: the /usr/local/etc/raddb/sql/mysql/ippool.sql schema is used to create the
radippool tables.

$ mysql -u root -p radius < /usr/local/etc/raddb/sql/mysql/ippool.sql

Below is the configuration of the sql.conf file.

$ vi /usr/local/etc/raddb/sql.conf

sql {
 database = "mysql"
 driver = "rlm_sql_${database}"
 server = "147.91.x.y"
 login = "radiusUSER"
 password = "radiusPASS"
 radius_db = "radius"
 acct_table1 = "radacct" # table that is used for accounting
 acct_table2 = "radacct" # table that is used for accounting
 postauth_table = "radpostauth"
 authcheck_table = "radcheck"
 authreply_table = "radreply"
 groupcheck_table = "radgroupcheck"
 groupreply_table = "radgroupreply"
 usergroup_table = "radusergroup"
 deletestalesessions = yes
 sqltrace = no
 sqltracefile = ${logdir}/sqltrace.sql
 num_sql_socks = 5
 connect_failure_retry_delay = 60
 lifetime = 0
 max_queries = 0
 nas_table = "nas"
 $INCLUDE sql/${database}/dialup.conf
}

29

The parameters of the MySQL database are defined in the sql section of the sql.conf file. The
address ranges, from which authenticated users are assigned IP addresses based on the domain of
their institution, are defined in radipool table of the radius database created in the MySQL
database. Each institution has its own address range, and each of these ranges has a name assigned
to it. The names of IP address ranges are mapped with the domains of the institutions in the users file
(explained in item 2). The MySQL database is installed on the host with IP address 147.91.x.y
(directive: server = "147.91.x.y"). The username and password for accessing the database are
defined by the variables, login and password, and are created for these purposes only. The
variable radius_db bears the name of the database within which the radipool table has been
defined (in this example, it is the radius database). Of course, for each member institution, it is
necessary to define a range of IP addresses in the radippool table that will be assigned to VPN
users of that member institution.

An example of the radippool table is shown in the Figure below.

mysql> use radius
Database changed
mysql> select * from radippool;
+----+--------------+-----------------+--------------+-----------------+-
-----------------+---------------------+--------------------+------------
--------+
| id | pool_name | framedipaddress | nasipaddress | calledstationid |
callingstationid | expiry_time | username | pool_key
|
+----+--------------+-----------------+--------------+-----------------+-
-----------------+---------------------+--------------------+------------
--------+
1	pool-inst1	10.8.1.1		
NULL				
2	pool-inst1	10.8.1.2		
NULL				
+----+--------------+-----------------+--------------+-----------------+-
-----------------+---------------------+--------------------+------------
--------+

4. The sqlippool directive also needs to be added in the accounting section of the vpn virtual server.
In this way, the RADIUS server is enabled to release a client’s IP address when the client terminates
the VPN connection, so that the address can be assigned to another client.

Likewise, the configuration lines defining the manner in which the RADIUS server processes
accounting messages about user activity are also specified in this section. The VPN server will send
the user activity data to the TLR server, which will send them to the appropriate SQL database in
accordance with the information from this section. This is why the sql configuration line in the
accounting section is important. It is actually the section inside the configuration file of the sql
module, i.e. sql.conf, which has been explained in detail in item 3 (the same sql module is being
called).

Therefore, it is the same MySQL database in which the abovementioned radius database is
configured. Also, it is in this database that the radacct is created, in which the user activity is entered.

Note: the /usr/local/etc/raddb/sql/mysql/schema.sql schema is used for creating the
table, for the purposes of the accounting mechanism.

30

$ mysql -u root -p radius < /usr/local/etc/raddb/sql/mysql/schema.sql

The sql/${database}/dialup.conf configuration file, which is included at the end of this section,
defines the data to be entered into the radacct table. This file already exists in the specified location
and it is included, by default, in the sql.conf configuration file. It is possible to modify it as needed.

All the other configuration parameters are standard.

5. In order to activate the vpn virtual server, it is necessary to create a link to the vpn configuration file at
the /sites-enabled directory.

$ cd /usr/local/etc/raddb/sites-enabled
$ ln –s /usr/local/etc/raddb/sites-available/vpn

2.2.1.2 clients.conf

The TLR server receives authentication requests from the VPN server only, which is why its clients.conf
file contains only the configuration concerning the VPN server, as shown below.

$ vi /usr/local/etc/raddb/clients.conf

. . . .
AMRES VPN server
client vpn-server {
 ipaddr = 147.91.c.d # IP address of internal interface of VPN
server
 secret = pass # Shared secret defined on the VPN server
 shortname = OpenVPN
 nastype = other
 virtual_server = vpn
}

It is very important to specify the vpn virtual server as the virtual_server, in which case, the requests
coming from this client will be processed according to the configuration of the vpn virtual server. The shared
secret, defined therein, is the same secret that has been defined in the radiusplugin.cnf configuration file
in the course of configuring the VPN server (chapter 2.1.2.2).

2.2.1.3 proxy.conf

The proxy.conf configuration file is the module according to which the RADIUS server decides whether an
incoming authentication request will be processed or forwarded to another server. For that purpose, the
home_server_pool, home_server and realm parameters are defined. The home_server parameter is
used for defining the individual RADIUS servers to which the authentication requests will be forwarded. The
server defined here is grouped in the home_server_pool. The domains expected to be found in the incoming
authentication requests are defined under the realm section. For a domain defined in the realm section, the
corresponding home_server_pool is entered, containing the RADIUS servers to which the authentication
requests sent for users with the specified domain will be forwarded.

31

As this document describes the TLR server configuration, all the incoming requests will be forwarded to the
RADIUS servers of the member institutions. Therefore, it is necessary to define the realm, home_server and
home_server_pool sections for the domain of each institution, according to the example presented below.

$ vi /usr/local/etc/raddb/proxy.conf

. . . .
realm inst1.ac.rs {
 auth_pool = inst1-server-pool
 nostrip
}
home_server_pool inst1-server-pool {
 type = fail-over
 home_server = inst1-home-server
}
home_server inst1-home-server {
 type = auth
 ipaddr = # IP address of the institution RADIUS server
 port = 1812
 secret = passINST1 # Shared secret defined on the institution RADIUS
#server
 response_window = 20
 zombie_period = 40
 revive_interval = 120
 status_check = none
 check_interval = 30
 num_answers_to_alive = 3
}

This concludes the configuration of your TLR server. It is necessary to start the server in debug mode.

 stopping the FreeRADIUS process

o killall radiusd for CentOS

o killall freeradius for Ubuntu

 starting the FreeRADIUS process in debug mode:

o radiusd –X for CentOS

o freeradius –X for Ubuntu

In this mode, it is possible to check whether the FreeRADIUS server has loaded the configuration and whether
the defined ports are open (1812, 1813).

32

2.2.2 An Example of an Institution’s RADIUS Server Configuration

This chapter provides an example of the configuration of the FreeRADIUS server of an AMRES member
institution taking part in the VPN service. The RADIUS server of the institution receives and processes the
authentication requests of its users sent from the TLR server. Each institution keeps the data on its users in a
database. The connection between the FreeRADIUS server and specific databases is outside the scope of this
document. Here, an example is given of using the users file for authenticating the users. This chapter covers
the configuration of all the relevant FreeRADIUS configuration files.

2.2.2.1 VPN Virtual Server

It is necessary to configure a virtual server that will process the authentication requests coming from the TLR
server. To that end, the contents of the default configuration file is copied to a new vpn file in the /sites-
available directory.

The configuration file, thus created, is modified according to the configuration provided below.

$ cd /usr/local/etc/raddb/sites-available
$ cp default vpn
$ vi vpn

server vpn {
authorize {
 auth_log
 suffix
 eap
 files
 pap
}
authenticate {
 Auth-Type PAP {
 pap
}
Auth-Type CHAP {
 chap
}
Auth-Type MS-CHAP {
 mschap
}
 unix
 eap
}
session {
 radutmp
}
post-auth {
 Post-Auth-Type REJECT {
 attr_filter.access_reject

33

 }
}
pre-proxy {
}
post-proxy {
 eap
}
}

The following modifications are of importance as compared to the default configuration file.

1. At the very beginning of the file, the “server vpn {“ line is added, and ”}“ is added at the end of the
file.

2. In the authorize section, the files module is specified. The same module is located in the
default virtual server. The files module is used here for reading the users configuration file for
the purpose of authenticating the clients. The username and password can be specified in this
configuration file. Below is an example of the line that can be used for that purpose.

$ vi /usr/local/etc/raddb/users
. . . .
"alice" Cleartext-Password := "passme"
. . . .

Hence, the user account defined above has alice as the username and passme as the password.

3. In order to activate the vpn virtual server, it is necessary to create a link to the vpn configuration file in
the /sites-enabled directory.

$ cd /usr/local/etc/raddb/sites-enabled
$ ln –s /usr/local/etc/raddb/sites-available/vpn

2.2.2.2 clients.conf

As the institution’s RADIUS server receives authentication requests from the TLR server only, it is necessary to
also configure the TLR server in its clients.conf file, as follows.

$ vi /usr/local/etc/raddb/clients.conf

. . . .

##AMRES VPN
client amres.vpn.radius {
ipaddr = tlr.amres.ac.rs
secret = passINST1
shortname = TLR
nastype = other
virtual_server = vpn
}

34

It is very important to enter the vpn virtual server as the virtual_server parameter, because, in this case,
the requests coming from the client will be processed according to the configuration of the vpn virtual server.
The name tlr.amres.ac.rs is the DNS name of the TLR server, while the shared secret is the same one
that has been defined for the RADIUS server of this institution in the proxy.conf file of the TLR server.

2.2.2.3 proxy.conf

As the described configuration is that of a member institution’s RADIUS server, all the received requests will be
processed locally, so it is necessary to create only a local realm and specify in it that authentication, which is
conducted locally. An example of the configuration of the proxy.conf file is presented below.

$ vi /usr/local/etc/raddb/proxy.conf

proxy server {
 default_fallback = no
}
home_server localhost {
 type = auth+acct
 ipaddr = 127.0.0.1
 port = 1812
 secret = testing123
 response_window = 20
 zombie_period = 40
 revive_interval = 120
 status_check = status-server
 check_interval = 30
 num_answers_to_alive = 3
}
realm inst1.ac.rs {
 authhost = LOCAL
 accthost = LOCAL
 User-Name = "%{Stripped-User-Name}"
}
realm LOCAL {
}
realm NULL {
}

In this case, inst1.ac.rs is the domain of the institution whose RADIUS server has been configured.

35

3 Conclusion

This completes the configuration of the basic components of the AMRES VPN service. The service has been
developed to enable the users of AMRES member institutions to access the academic network and utilise the
offered services, even when they are outside their institutions. Of course, the end users must observe the VPN
service terms and conditions. Once the VPN connection is established, the VPN user device becomes a part of
the AMRES network, which is why the user must abide the rules defined in the Acceptable Use Policy (AUP) of
the Academic Network of Serbia. These concern both the adequate protection of their computers and of all the
activities within the AMRES network.

The VPN service relies on the RADIUS infrastructure that was developed and is used in the eduroam® service.
In order for an institution to enable its users to access the VPN service, it needs to provide them with a
username and password. Both the quality of data and the quality of the assignment, maintenance, and
cancellation of identity must be satisfactory. Besides the username and password, a digital identity of a user
must contain sufficient data to identify the real person using a certain username. Identities can only be
assigned to persons who are connected to the home institution at a given time and they must be exclusively
personal. All AMRES institutions participating in the eduroam® service meet these conditions. This minimises
investment by AMRES institutions who wish to become users of the VPN service. On the other hand, AMRES
provides full support to all of its members institutions interested in implementing their VPN solution.

36

References

[1] M. Feilner, N. Graf, “Beginning OpenVPN 2.0.9, Build and Integrate Virtual Private Networks
using OpenVPN”

[2] Jan Just Keijser, “OpenVPN 2 Cookbook”
[3] S. Frankel, P. Hoffman, A. Orebaugh, R. Park, “Guide to SSL VPNs”
[4] Dirk van der Walt, “FreeRADIUS Beginner’s Guide
[5] OpenVPN: http://openvpn.net/index.php/access-server/docs.html
[6] FreeRADIUS: http://freeradius.org/

37

Glossary

VPN Virtual Private Network
RADIUS Remote Authentication Dial In User Service
TLR Top Level RADIUS
EAP Extensible Authentication Protocol
SSL Secure Sockets Layer
TLS Transport Layer Security
PAP Password Authentication Protocol
MSCHAPv2 Microsoft Challenge Handshake Auth Protocol version 2
LZO Lempel-Ziv-Oberhumer
DH Diffie-Hellman
CA Certificate Authority
SQL Structured Query Language
HMAC Hash-based Message Authentication Code
AUP Acceptable Use Policy

Complete BPDs available at www.terena.org/campus-bp/

 campus-bp-announcements@terena.org

